Blog

Liderazgo del pensamiento

Cyber AI Analyst: Cutting Through the Noise to Gain the Security Edge

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Nov 2022
29
Nov 2022
This blog addresses the issue of alert fatigue and explains how Cyber AI Analyst breaks down billions of individual events, first into anomalous events and then into prioritized security incidents ready for the security team's review.

For cyber security experts, it’s hard enough staying on top of the latest threats and emerging attacks without having to deal with a virtual tsunami of alert noise from systems monitoring email, SaaS environments, and endpoints – in addition to IaaS cloud and on-premises networks. Unfortunately, fatigue from these demands can lead to overworking, burnout, and crucially, high employee turnover. 

The worldwide industry shortage of 3.5 million cyber security professionals only exacerbates the problem. Not only does it add pressure to the current stock of skilled and available security professionals, but it also raises the stakes for CISOs and other security leaders to find a way to cut through the alert noise while staying on ahead of threat actors who never stop innovating and applying novel malware strains and attack techniques.

Working Smarter Not Harder

One way to help with retention is to empower security teams to break away from monotony and to think creatively and leverage their expertise where it can really add value. Working smarter, rather than harder, is often easier said than done, but by employing automation and AI-driven tools to take on the heavy lifting of threat detection, investigation, and response, human teams can be given the breathing room needed to focus on long-term objectives and think more deeply about their security approaches.

It is important for security programs to continuously level up alongside evolving threat landscapes by questioning existing security operations, and this cannot be achieved during times of hand-to-hand alert combat.

When alerts are fewer, higher quality, and context-heavy, the background to each can be easily explored, whether that’s reevaluating a policy or configuration, or simply asking useful questions around the company’s broader security approach. Work done at this level empowers security teams and fosters growth.

Less is More

Business risk– or the potential impact of cyber disruption– should be the number one concern driving a security team, but lack of resources is a near-constant constraint. Reducing the volume of alerts doesn’t just mean bringing the noise floor up. You can think of the noise floor as an alert threshold: if it is too high then there are fewer alerts, but more threats may be missed, whereas if it is too low, there are high volumes of unhelpful false positives. Freeing up time for the team must not equate to ignoring alerts; it should instead mean focusing on the alerts that matter.

Darktrace’s technologies make this possible, with Darktrace DETECT™ and Cyber AI Analyst working together to address alert fatigue and burnout for security teams while strengthening an organizations’ overall security posture. Cyber AI Analyst essentially takes over the busy work from the human analysts and elevates a team’s overall decision making. Teams now operate at higher levels, as they’re not stuck in mundane alert management and humans are brought in only after the machine and AI have done the heavy lifting.

“Before AI Analyst, we were barely treading water with all of the alerts, most of which were false positives, our old systems produced daily. With AI Analyst, we’ve been able to exponentially reduce those alerts, harden our environment, and get strategic.”

Dr. Robert Spangler, the CISO and Assistant Executive Director of the New Jersey State Bar Association.

Figure 1: Billions of individual events are reduced into a critical incident for review


Imagine a scenario in which Darktrace observed around 9.6 billion events over a 28-day period. DETECT and Cyber AI Analyst might distill that huge amount of data down into just, say, 54 critical incidents, or just two per day. Here’s how:

9.6 billion events

When trying to understand the full picture, every single puzzle piece counts. That’s why Darktrace’s Self-Learning AI goes wherever your organization has data, integrating with data sources across the digital estate, including network, email, endpoints, OT, cloud, and SaaS environments. And with an open architecture, Darktrace facilitates quick and easy integrations with everything from SIEMs and SOARs to public clouds and the latest Zero Trust technologies. So, any data can become learnable, whether directly ingested or via integration.

By examining this full and contextualized data set, Self-Learning AI builds a constantly evolving understanding of what ‘normal’ looks like for the entire organization. Every connection, every email, app login, resource accessed, VM spun up, PLC reprogrammed, and more become signals from which Darktrace can learn, evaluate, and improve its understanding.

40,404 model breaches

The billions of events are analyzed by Darktrace DETECT, which uses its extensive knowledge of ‘normal’ to draw out hosts of subtle anomalies or ‘AI model breaches.’ Many of these AI model breaches will be weak indicators of threatening activity, and most will not be sufficient to individually signal a threat. For that reason, no human attention is required at this stage. Darktrace DETECT will continue to draw anomalous behaviors from the ongoing stream of events without the need for intervention. 

200 incidents

The Cyber AI Analyst takes the total list of model breaches collated by DETECT and performs the truly sophisticated work of determining distinct threat incidents. By piecing together anomalies which may, in themselves, appear harmless, the AI Analyst draws out subtle and often wide-ranging attacks, tracking their route from the initial compromise to the present moment. This creates a much shorter list of genuine threat incidents, but there is still no need for human attention at this stage.

54 critical incidents

Once it has discovered the threat incidents facing an organization, the Cyber AI Analyst begins the crucial processes of triage to determine which incidents need to be surfaced to the security team, and in what order of priority. This supplies the human team with a highly focused briefing of the most pressing threats, massively reducing their overall workload and minimizing or potentially eradicating alert fatigue. In the above example of a month with over 9.6 billion distinct events, the team are left with just two incidents to address per day. These two incidents are clearly presented with natural language-processing and all the most relevant info, including details, devices, and dates. 

“When we had other, noisier systems, we didn’t have the time to have truly in-depth discussions or conduct deep investigations, so there were fewer teachable moments for junior team members and fewer opportunities to inform our cybersecurity strategy as a whole,” Spangler said. “Now, we’re not just a better team, we’re more efficient, responsive, and informed than we’ve ever been. We’re all better cyber security professionals as a result.”

In the event of a breach, CISOs and security leaders want the full incident report, and they want it yesterday. The promise of AI is to handle specific tasks at a speed and scale that humans can’t. Going from 9.6 billion events to 54 incidents demonstrates the scale, but it’s important to consider the impact of speed here as well, as the Cyber AI Analyst works in real time, meaning all relevant events are presented in an easy to consume downloadable report available immediately upon investigation.

This isn’t a black box either; every step of the AI Analyst’s investigation process is visible to the human team. Not only can they see the relevant events and breaches that led to the incident, but if required, they can pivot into them easily with a click. If the investigation requires going all the way down to the metadata level to easily peruse the filtered events of the 9.6 billion overall signals or even to PCAP data, those are available and easy to find too.

Since DETECT and Cyber AI Analyst not only reduce alert fatigue but also simplify incident investigations, security teams feel empowered and experience less burnout. 

“We’ve been stable and have had minimal turnover since we started using AI Analyst,” Spangler said. “We’re not scrambling to keep up with noisy and time-consuming false positives, making the investigations that we undertake stimulating and– I say this cautiously– fun! Put simply, the thing we all love about this career, the virtual chess game we play with attackers, is a lot more fun when you know you’re going to win.”

Respuesta autónoma

Organizations that deploy Darktrace RESPOND™ can address the incidents raised by DETECT and the Cyber AI Analyst autonomously, and in mere seconds. Using the full context of the organization built up by Self-Learning AI, RESPOND takes the least disruptive measures necessary to disarm threats at machine speed. By the time the security team learns about the attack, it is already contained, continuing to save them from the hand-to-hand combat of threat fighting.

With day-to-day threat detection, response, and analysis taken care of, security teams are free to give full and sustained attention to their overall security posture. Neutralized threats may yet reveal broader security gaps and potential improvements which the team now has the time and headspace to pursue.

For example, discovering a trend that users are uploading potentially sensitive data via third-party file-sharing services might lead to a discussion about whether it should be company policy to block access to this service, reducing to zero the number of future alerts that would have been triggered by this behavior. Importantly, this wouldn’t be altering the aforementioned noise floor, but instead fundamentally altering security policies to align with the needs of the business, which could indirectly affect future alerting, as activities may subside.

As a result, practitioners find more value in their work, security teams efforts are optimized, and organizations are strengthened overall.

“We’re now focused on the items that AI Analyst alerts us to, which are always worth looking into because they either identify an activity that we need to get eyes on and/or provide us with insight into ways we can harden our network,” Spangler said. “The hardening that we’ve done has been incalculably beneficial– it’s one of the reasons we get fewer alerts, and it’s also protected us against a wide variety of threats.”

DENTRO DEL SOC
Darktrace son expertos de talla mundial en inteligencia de amenazas, caza de amenazas y respuesta a incidentes, y proporcionan apoyo al SOC las 24 horas del día a miles de clientes de Darktrace en todo el mundo. Inside the SOC está redactado exclusivamente por estos expertos y ofrece un análisis de los ciberincidentes y las tendencias de las amenazas, basado en la experiencia real sobre el terreno.
AUTOR
SOBRE EL AUTOR
Dan Fein
VP, Producto

Based in New York, Dan joined Darktrace’s technical team in 2015, helping customers quickly achieve a complete and granular understanding of Darktrace’s product suite. Dan has a particular focus on Darktrace/Email, ensuring that it is effectively deployed in complex digital environments, and works closely with the development, marketing, sales, and technical teams. Dan holds a Bachelor’s degree in Computer Science from New York University.

Elliot Stocker
Product SME

After 2 years in a commercial role helping to deploy Darktrace across a broad range of digital environments, Elliot currently occupies the role of Product Subject Matter Expert, where he helps to articulate the value of Darktrace’s technology to customers around the world. Elliot holds a Masters degree in Data Science and Machine Learning, using this knowledge to communicate concepts around machine learning and AI in an accessible way to different audiences.

Book a 1-1 meeting with one of our experts
share this article
CASOS DE USO
No se ha encontrado ningún artículo.

More in this series

No se ha encontrado ningún artículo.

Blog

Email

How to Protect your Organization Against Microsoft Teams Phishing Attacks

Default blog imageDefault blog image
21
May 2024

The problem: Microsoft Teams phishing attacks are on the rise

Around 83% of Fortune 500 companies rely on Microsoft Office products and services1, with Microsoft Teams and Microsoft SharePoint in particular emerging as critical platforms to the business operations of the everyday workplace. Researchers across the threat landscape have begun to observe these legitimate services being leveraged more and more by malicious actors as an initial access method.

As Teams becomes a more prominent feature of the workplace many employees rely on it for daily internal and external communication, even surpassing email usage in some organizations. As Microsoft2 states, "Teams changes your relationship with email. When your whole group is working in Teams, it means you'll all get fewer emails. And you'll spend less time in your inbox, because you'll use Teams for more of your conversations."

However, Teams can be exploited to send targeted phishing messages to individuals either internally or externally, while appearing legitimate and safe. Users might receive an external message request from a Teams account claiming to be an IT support service or otherwise affiliated with the organization. Once a user has accepted, the threat actor can launch a social engineering campaign or deliver a malicious payload. As a primarily internal tool there is naturally less training and security awareness around Teams – due to the nature of the channel it is assumed to be a trusted source, meaning that social engineering is already one step ahead.

Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)
Figure 1: Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)

Microsoft Teams Phishing Examples

Microsoft has identified several major phishing attacks using Teams within the past year.

In July 2023, Microsoft announced that the threat actor known as Midnight Blizzard – identified by the United States as a Russian state-sponsored group – had launched a series of phishing campaigns via Teams with the aim of stealing user credentials. These attacks used previously compromised Microsoft 365 accounts and set up new domain names that impersonated legitimate IT support organizations. The threat actors then used social engineering tactics to trick targeted users into sharing their credentials via Teams, enabling them to access sensitive data.  

At a similar time, threat actor Storm-0324 was observed sending phishing lures via Teams containing links to malicious SharePoint-hosted files. The group targeted organizations that allow Teams users to interact and share files externally. Storm-0324’s goal is to gain initial access to hand over to other threat actors to pursue more dangerous follow-on attacks like ransomware.

For a more in depth look at how Darktrace stops Microsoft Teams phishing read our blog: Don’t Take the Bait: How Darktrace Keeps Microsoft Teams Phishing Attacks at Bay

The market: Existing Microsoft Teams security solutions are insufficient

Microsoft’s native Teams security focuses on payloads, namely links and attachments, as the principal malicious component of any phishing. These payloads are relatively straightforward to detect with their experience in anti-virus, sandboxing, and IOCs. However, this approach is unable to intervene before the stage at which payloads are delivered, before the user even gets the chance to accept or deny an external message request. At the same time, it risks missing more subtle threats that don’t include attachments or links – like early stage phishing, which is pure social engineering – or completely new payloads.

Equally, the market offering for Teams security is limited. Security solutions available on the market are always payload-focused, rather than taking into account the content and context in which a link or attachment is sent. Answering questions like:

  • Does it make sense for these two accounts to speak to each other?
  • Are there any linguistic indicators of inducement?

Furthermore, they do not correlate with email to track threats across multiple communication environments which could signal a wider campaign. Effectively, other market solutions aren’t adding extra value – they are protecting against the same types of threats that Microsoft is already covering by default.

The other aspect of Teams security that native and market solutions fail to address is the account itself. As well as focusing on Teams threats, it’s important to analyze messages to understand the normal mode of communication for a user, and spot when a user’s Teams activity might signal account takeover.

The solution: How Darktrace protects Microsoft Teams against sophisticated threats

With its biggest update to Darktrace/Email ever, Darktrace now offers support for Microsoft Teams. With that, we are bringing the same AI philosophy that protects your email and accounts to your messaging environment.  

Our Self-Learning AI looks at content and context for every communication, whether that’s sent in an email or Teams message. It looks at actual user behavior, including language patterns, relationship history of sender and recipient, tone and payloads, to understand if a message poses a threat. This approach allows Darktrace to detect threats such as social engineering and payloadless attacks using visibility and forensic capabilities that Microsoft security doesn’t currently offer, as well as early symptoms of account compromise.  

Unlike market solutions, Darktrace doesn’t offer a siloed approach to Teams security. Data and signals from Teams are shared across email to inform detection, and also with the wider Darktrace ActiveAI security platform. By correlating information from email and Teams with network and apps security, Darktrace is able to better identify suspicious Teams activity and vice versa.  

Interested in the other ways Darktrace/Email augments threat detection? Read our latest blog on how improving the quality of end-user reporting can decrease the burden on the SOC. To find our more about Darktrace's enduring partnership with Microsoft, click here.

References

[1] Essential Microsoft Office Statistics in 2024

[2] Microsoft blog, Microsoft Teams and email, living in harmony, 2024

Continue reading
About the author
Carlos Gray
Product Manager

Blog

Dentro del SOC

Don’t Take the Bait: How Darktrace Keeps Microsoft Teams Phishing Attacks at Bay

Default blog imageDefault blog image
20
May 2024

Social Engineering in Phishing Attacks

Faced with increasingly cyber-aware endpoint users and vigilant security teams, more and more threat actors are forced to think psychologically about the individuals they are targeting with their phishing attacks. Social engineering methods like taking advantage of the human emotions of their would-be victims, pressuring them to open emails or follow links or face financial or legal repercussions, and impersonating known and trusted brands or services, have become common place in phishing campaigns in recent years.

Phishing with Microsoft Teams

The malicious use of the popular communications platform Microsoft Teams has become widely observed and discussed across the threat landscape, with many organizations adopting it as their primary means of business communication, and many threat actors using it as an attack vector. As Teams allows users to communicate with people outside of their organization by default [1], it becomes an easy entry point for potential attackers to use as a social engineering vector.

In early 2024, Darktrace/Apps™ identified two separate instances of malicious actors using Microsoft Teams to launch a phishing attack against Darktrace customers in the Europe, the Middle East and Africa (EMEA) region. Interestingly, in this case the attackers not only used a well-known legitimate service to carry out their phishing campaign, but they were also attempting to impersonate an international hotel chain.

Despite these attempts to evade endpoint users and traditional security measures, Darktrace’s anomaly detection enabled it to identify the suspicious phishing messages and bring them to the customer’s attention. Additionally, Darktrace’s autonomous response capability, was able to follow-up these detections with targeted actions to contain the suspicious activity in the first instance.

Darktrace Coverage of Microsoft Teams Phishing

Chats Sent by External User and Following Actions by Darktrace

On February 29, 2024, Darktrace detected the presence of a new external user on the Software-as-a-Service (SaaS) environment of an EMEA customer for the first time. The user, “REDACTED@InternationalHotelChain[.]onmicrosoft[.]com” was only observed on this date and no further activities were detected from this user after February 29.

Later the same day, the unusual external user created its first chat on Microsoft Teams named “New Employee Loyalty Program”. Over the course of around 5 minutes, the user sent 63 messages across 21 different chats to unique internal users on the customer’s SaaS platform. All these chats included the ‘foreign tenant user’ and one of the customer’s internal users, likely in an attempt to remain undetected. Foreign tenant user, in this case, refers to users without access to typical internal software and privileges, indicating the presence of an external user.

Darktrace’s detection of unusual messages being sent by a suspicious external user via Microsoft Teams.
Figure 1: Darktrace’s detection of unusual messages being sent by a suspicious external user via Microsoft Teams.
Advanced Search results showing the presence of a foreign tenant user on the customer’s SaaS environment.
Figure 2: Advanced Search results showing the presence of a foreign tenant user on the customer’s SaaS environment.

Darktrace identified that the external user had connected from an unusual IP address located in Poland, 195.242.125[.]186. Darktrace understood that this was unexpected behavior for this user who had only previously been observed connecting from the United Kingdom; it further recognized that no other users within the customer’s environment had connected from this external source, thereby deeming it suspicious. Further investigation by Darktrace’s analyst team revealed that the endpoint had been flagged as malicious by several open-source intelligence (OSINT) vendors.

External Summary highlighting the rarity of the rare external source from which the Teams messages were sent.
Figure 3: External Summary highlighting the rarity of the rare external source from which the Teams messages were sent.

Following Darktrace’s initial detection of these suspicious Microsoft Teams messages, Darktrace's autonomous response was able to further support the customer by providing suggested mitigative actions that could be applied to stop the external user from sending any additional phishing messages.

Unfortunately, at the time of this attack Darktrace's autonomous response capability was configured in human confirmation mode, meaning any autonomous response actions had to be manually actioned by the customer. Had it been enabled in autonomous response mode, it would have been able promptly disrupt the attack, disabling the external user to prevent them from continuing their phishing attempts and securing precious time for the customer’s security team to begin their own remediation procedures.

Darktrace autonomous response actions that were suggested following the ’Large Volume of Messages Sent from New External User’ detection model alert.
Figure 4: Darktrace autonomous response actions that were suggested following the ’Large Volume of Messages Sent from New External User’ detection model alert.

External URL Sent within Teams Chats

Within the 21 Teams chats created by the threat actor, Darktrace identified 21 different external URLs being sent, all of which included the domain "cloud-sharcpoint[.]com”. Many of these URLs had been recently established and had been flagged as malicious by OSINT providers [3]. This was likely an attempt to impersonate “cloud-sharepoint[.]com”, the legitimate domain of Microsoft SharePoint, with the threat actor attempting to ‘typo-squat’ the URL to convince endpoint users to trust the legitimacy of the link. Typo-squatted domains are commonly misspelled URLs registered by opportunistic attackers in the hope of gaining the trust of unsuspecting targets. They are often used for nefarious purposes like dropping malicious files on devices or harvesting credentials.

Upon clicking this malicious link, users were directed to a similarly typo-squatted domain, “InternatlonalHotelChain[.]sharcpoInte-docs[.]com”. This domain was likely made to appear like the SharePoint URL used by the international hotel chain being impersonated.

Redirected link to a fake SharePoint page attempting to impersonate an international hotel chain.
Figure 5: Redirected link to a fake SharePoint page attempting to impersonate an international hotel chain.

This fake SharePoint page used the branding of the international hotel chain and contained a document named “New Employee Loyalty Program”; the same name given to the phishing messages sent by the attacker on Microsoft Teams. Upon accessing this file, users would be directed to a credential harvester, masquerading as a Microsoft login page, and prompted to enter their credentials. If successful, this would allow the attacker to gain unauthorized access to a user’s SaaS account, thereby compromising the account and enabling further escalation in the customer’s environment.

Figure 6: A fake Microsoft login page that popped-up when attempting to open the ’New Employee Loyalty Program’ document.

This is a clear example of an attacker attempting to leverage social engineering tactics to gain the trust of their targets and convince them to inadvertently compromise their account. Many corporate organizations partner with other companies and well-known brands to offer their employees loyalty programs as part of their employment benefits and perks. As such, it would not necessarily be unexpected for employees to receive such an offer from an international hotel chain. By impersonating an international hotel chain, threat actors would increase the probability of convincing their targets to trust and click their malicious messages and links, and unintentionally compromising their accounts.

In spite of the attacker’s attempts to impersonate reputable brands, platforms, Darktrace/Apps was able to successfully recognize the malicious intent behind this phishing campaign and suggest steps to contain the attack. Darktrace recognized that the user in question had deviated from its ‘learned’ pattern of behavior by connecting to the customer’s SaaS environment from an unusual external location, before proceeding to send an unusually large volume of messages via Teams, indicating that the SaaS account had been compromised.

A Wider Campaign?

Around a month later, in March 2024, Darktrace observed a similar incident of a malicious actor impersonating the same international hotel chain in a phishing attacking using Microsoft Teams, suggesting that this was part of a wider phishing campaign. Like the previous example, this customer was also based in the EMEA region.  

The attack tactics identified in this instance were very similar to the previously example, with a new external user identified within the network proceeding to create a series of Teams messages named “New Employee Loyalty Program” containing a typo-squatted external links.

There were a few differences with this second incident, however, with the attacker using the domain “@InternationalHotelChainExpeditions[.]onmicrosoft[.]com” to send their malicious Teams messages and using differently typo-squatted URLs to imitate Microsoft SharePoint.

As both customers targeted by this phishing campaign were subscribed to Darktrace’s Proactive Threat Notification (PTN) service, this suspicious SaaS activity was promptly escalated to the Darktrace Security Operations Center (SOC) for immediate triage and investigation. Following their investigation, the SOC team sent an alert to the customers informing them of the compromise and advising urgent follow-up.

Conclusion

While there are clear similarities between these Microsoft Teams-based phishing attacks, the attackers here have seemingly sought ways to refine their tactics, techniques, and procedures (TTPs), leveraging new connection locations and creating new malicious URLs in an effort to outmaneuver human security teams and conventional security tools.

As cyber threats grow increasingly sophisticated and evasive, it is crucial for organizations to employ intelligent security solutions that can see through social engineering techniques and pinpoint suspicious activity early.

Darktrace’s Self-Learning AI understands customer environments and is able to recognize the subtle deviations in a device’s behavioral pattern, enabling it to effectively identify suspicious activity even when attackers adapt their strategies. In this instance, this allowed Darktrace to detect the phishing messages, and the malicious links contained within them, despite the seemingly trustworthy source and use of a reputable platform like Microsoft Teams.

Credit to Min Kim, Cyber Security Analyst, Raymond Norbert, Cyber Security Analyst and Ryan Traill, Threat Content Lead

Appendix

Darktrace Model Detections

SaaS Model

Large Volume of Messages Sent from New External User

SaaS / Unusual Activity / Large Volume of Messages Sent from New External User

Indicators of Compromise (IoCs)

IoC – Type - Description

https://cloud-sharcpoint[.]com/[a-zA-Z0-9]{15} - Example hostname - Malicious phishing redirection link

InternatlonalHotelChain[.]sharcpolnte-docs[.]com – Hostname – Redirected Link

195.242.125[.]186 - External Source IP Address – Malicious Endpoint

MITRE Tactics

Tactic – Technique

Phishing – Initial Access (T1566)

References

[1] https://learn.microsoft.com/en-us/microsoftteams/trusted-organizations-external-meetings-chat?tabs=organization-settings

[2] https://www.virustotal.com/gui/ip-address/195.242.125.186/detection

[3] https://www.virustotal.com/gui/domain/cloud-sharcpoint.com

Continue reading
About the author
Min Kim
Cyber Security Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Inicie su prueba gratuita
Darktrace AI protecting a business from cyber threats.