Blog

Email

Escribir mal: Por qué la reescritura de enlaces de Mimecast da una falsa sensación de seguridad

Default blog imageDefault blog image
04
Nov 2020
04
Nov 2020

Many organizations feel secure in the knowledge that their email gateway is rewriting all of the harmful links targeting their employees. Link rewriting is a common technique that involves encoding URLs sent via email into a link that redirects the user to the gateway’s own servers. These servers contain some unique codes that then track the user and perform later checks to determine whether the link is malicious.

This blog reveals why the sense of protection this gives is a fallacy, and how rewriting links does not equate to protecting the end user from actual harm. In fact, gateways’ reliance on this technique is actually an indicator of one of their fundamental flaws: their reliance on rules and signatures of previously recognized threats, and their consequent inability to stop threats on the first encounter. The reason these tools pre-emptively rewrite links is so they can make a determination later on: with the link now pointing to their own servers, they can leverage their updated assessment of that link and block a malicious site, once more information has become available (often once ‘patient zero’ has become infected; and the damage is already done).

Email security that recognizes and blocks threats on the first encounter has no need to rewrite every link.

How to measure success

If the sheer number of links rewritten is to be our measure of success, then traditional gateways win every time. For instance, Mimecast will usually rewrite 100% of the harmful links that Antigena Email locks. In fact, it rewrites nearly 100% of all links. That even includes links pointing to trusted websites like LinkedIn and Twitter, and even emails containing links to the recipient’s own website. So when tim.cook[at]apple.com receives a link to apple.com, for example, ‘mimecast.com’ will still dominate the URL.

Some organizations suffering from low first-encounter catch rates with their gateways have responded by increasing employee education: training the human to spot the giveaways of a phishing email. With email attacks getting more targeted and sophisticated, humans should never be considered the last line of defense, and rewriting links makes the situation even worse. If you’re training your users to watch which links they’re clicking, and every one of those links reads ‘mimecast.com’, how are your users supposed to learn what’s good, bad, or sketchy when every URL looks the same?

Moreover, when Mimecast’s URL gateway is down, these rewritten links don’t work (and the same applies to protected attachments). This results in business downtime which is intolerable for businesses in these critical and challenging times.

We can see the effect of blanket rewriting through Darktrace’s user interface, which shows us the frequency of rewritten links over time. Looking back over three days, this particular customer – who was trialing Antigena Email alongside Mimecast, received 155,008 emails containing rewritten links. Of those, 1,478 were anomalous, and Darktrace’s AI acted to immediately lock those links, protecting even the first recipient from harm. The remaining 153,530 links were all unnecessarily rewritten.

Figure 1: Over 155,000 inbound emails contained rewritten Mimecast links

If it comes to actually stopping the threat when a user goes to click that rewritten link, gateway tools fail. Their reliance on legacy checks like reputation, deny-lists, and rules and signatures mean that malicious content will sometimes sit for days or weeks without any meaningful action, as the technology requires at least one – and usually many – ‘patient zeros’ before determining a URL or an attachment as malicious, and updating their deny-lists.

Let’s look at the case of an attack launched from entirely new infrastructure: from a freshly purchased domain, and containing a newly created malicious payload. None of the typical metrics legacy tools search for appear as malicious, and so of course, the threat gets through, and ‘patient zero’ is infected.

Figure 2: ‘Patient Zero’ denotes the first victim of an email attack.

It inevitably takes time for the malicious link to be recognized as malicious, and for that to be reported. By this point, large swathes of the workforce have also become infected. We can call this the ‘time to detection’.

Figure 3: The time to detection

As legacy tools then update their lists in recognition of the attack, the malware continues to infect the organization, with more users engaging in the contents of the email.

Figure 4: The legacy tool reacts

Finally, the legacy tool reacts, updating its deny-list and providing substantive action to protect the end user from harm. By this point, hundreds of users across multiple organizations may have interacted with the links in some way.

Figure 5: Many ‘patient zeros’ are required before the threat is deny-listed

Email gateways’ reliance on rewriting links is directly related to their legacy approach to detection. They do it so that later down the line, when they have updated information about a potential attack, they can take action. Until then, it’s just a rewritten link, and if clicked on, it will bring the user to whatever website was hiding underneath it.

These links are also rewritten in an attempt to grasp an understanding of what user network behavior looks like. But far from giving an accurate or in-depth picture of network activity, this method barely scratches the surface of the wider behaviors of users across the organization.

Alongside Darktrace’s Enterprise Immune System, Antigena Email can pull these insights directly from a unified, central AI engine that has complete and direct visibility over an organization’s entire digital estate – not just links accessed from emails, but network activity as a whole – and not a makeshift version where it is assumed people only visit links through emails. It also pulls insights from user behavior in the cloud and across SaaS applications – from Salesforce to Microsoft Teams.

Taking real action in real time

While gateways rewrite everything in order to leave the door open to make assessments later on, Darktrace is able to take action when it needs to – before the email poses a threat in the inbox. The technology is uniquely able to do this due to its high success rates for malicious emails seen on first encounter. And it’s able to achieve such high success rates because it takes a much more sophisticated approach to detection that uses AI to catch a threat – regardless of whether or not that threat has been seen before.

La comprensión de lo "normal" de Darktrace para el ser humano que está detrás de las comunicaciones por correo electrónico le permite no sólo detectar desviaciones sutiles que son indicativas de una ciberamenaza, sino responder a esa amenaza en el punto de entrega. Esta respuesta es específica, proporcionada y no disruptiva, y varía según la naturaleza del ataque. Mientras que el aprendizaje automático no supervisado de Darktracepuede identificar con precisión las desviaciones de lo "normal", sus modelos de aprendizaje automático supervisado son capaces de clasificar la intención detrás del correo electrónico; lo que el atacante está tratando de hacer (extorsionar información, solicitar un pago, cosechar credenciales, o convencer al usuario de descargar un archivo adjunto malicioso).

Crucially, organizations trialing both approaches to security find that Antigena Email consistently identifies threats that Mimecast and other tools miss. With the scale and sophistication of email attacks growing, the need for a proactive and modern approach to email security is paramount. Organizations need to ensure they are measuring their sense of protection with the right yardstick, and adopt a technology that can take meaningful action before damage is done.

Trial Antigena Email today

¿Te gusta esto y quieres más?

Reciba el último blog en su bandeja de entrada
Gracias. Hemos recibido su envío.
¡Ups! Algo salió mal al enviar el formulario.
DENTRO DEL SOC
Darktrace son expertos de talla mundial en inteligencia de amenazas, caza de amenazas y respuesta a incidentes, y proporcionan apoyo al SOC las 24 horas del día a miles de clientes de Darktrace en todo el mundo. Inside the SOC está redactado exclusivamente por estos expertos y ofrece un análisis de los ciberincidentes y las tendencias de las amenazas, basado en la experiencia real sobre el terreno.
AUTOR
SOBRE EL AUTOR
Dan Fein
VP, Producto

Based in New York, Dan joined Darktrace’s technical team in 2015, helping customers quickly achieve a complete and granular understanding of Darktrace’s product suite. Dan has a particular focus on Darktrace/Email, ensuring that it is effectively deployed in complex digital environments, and works closely with the development, marketing, sales, and technical teams. Dan holds a Bachelor’s degree in Computer Science from New York University.

share this article
CASOS DE USO
No se ha encontrado ningún artículo.
PRODUCTOS DESTACADOS
No se ha encontrado ningún artículo.
Cobertura básica
No se ha encontrado ningún artículo.

Blog

Dentro del SOC

How Abuse of ‘PerfectData Software’ May Create a Perfect Storm: An Emerging Trend in Account Takeovers

Default blog imageDefault blog image
05
Jun 2023

Amidst the ever-changing threat landscape, new tactics, techniques, and procedures (TTPs) seem to emerge daily, creating extreme challenges for security teams. The broad range of attack methods utilized by attackers seems to present an insurmountable problem: how do you defend against a playbook that does not yet exist?

Faced with the growing number of novel and uncommon attack methods, it is essential for organizations to adopt a security solution able to detect threats based on their anomalies, rather than relying on threat intelligence alone.   

In March 2023, Darktrace observed an emerging trend in the use of an application known as ‘PerfectData Software’ for probable malicious purposes in several Microsoft 365 account takeovers.

Using its anomaly-based detection, Darktrace DETECT™ was able to identify the activity chain surrounding the use of this application, potentially uncovering a novel piece of threat actor tradecraft in the process.

Microsoft 365 Intrusions

In recent years, Microsoft’s Software-as-a-Service (SaaS) suite, Microsoft 365, along with its built-in identity and access management (IAM) service, Azure Active Directory (Azure AD), have been heavily targeted by threat actors due to their near-ubiquitous usage across industries. Four out of every five Fortune 500 companies, for example, use Microsoft 365 services [1].  

Malicious actors typically gain entry to organizations’ Microsoft 365 environments by abusing either stolen account credentials or stolen session cookies [2]. Once inside, actors can access sensitive data within mailboxes or SharePoint repositories, and send out emails or Teams messages. This activity can often result in serious financial harm, especially in cases where the malicious actor’s end-goal is to elicit fraudulent transactions.  

Darktrace regularly observes malicious actors behaving in predictable ways once they gain access to customer Microsoft 365 environment. One typical example is the creation of new inbox rules and sending deceitful emails intended to convince recipients to carry out subsequent actions, such as following a malicious link or providing sensitive information. It is also common for actors to register new applications in Azure AD so that they can be used to conduct follow-up activities, like mass-mailing or data theft. The registration of applications in Azure AD therefore seems to be a relatively predictable threat actor behavior [3][4]. Darktrace DETECT understands that unusual application registrations in Azure AD may constitute a deviation in expected behavior, and therefore a possible indicator of account compromise.

These registrations of applications in Azure AD are evidenced by creations of, as well as assignments of permissions to, Service Principals in Azure AD. Darktrace has detected a growing trend in actors creating and assigning permissions to a Service Principal named ‘PerfectData Software’. Further investigation of this Azure AD activity revealed it to be part of an ongoing account takeover. 

 ‘PerfectData Software’ Activity 

Darktrace observed variations of the following pattern of activity relating to an application named ‘PerfectData Software’ within its customer base:

  1. Actor signs in to a Microsoft 365 account from an endpoint associated with a Virtual Private Server (VPS) or Virtual Private Network (VPN) service
  2. Actor registers an application called 'PerfectData Software' with Azure AD, and then grants permissions to the application
  3. Actor accesses mailbox data and creates inbox rule 

In two separate incidents, malicious actors were observed conducting their activities from endpoints associated with VPN services (HideMyAss (HMA) VPN and Surfshark VPN, respectively) and from endpoints within the Autonomous System AS396073 MAJESTIC-HOSTING-01. 

In March 2023, Darktrace observed a malicious actor signing in to a Microsoft 365 account from a Kuwait-based IP address within the Autonomous System, AS198605 AVAST Software s.r.o. This IP address is associated with the VPN service, HMA VPN. Over the next couple of days, an actor (likely the same malicious actor) signed in to the account several more times from two different Nigeria-based endpoints, as well as a VPS-related endpoint and a HMA VPN endpoint. 

During their login sessions, the actor performed a variety of actions. First, they created and assigned permissions to a Service Principal named ‘PerfectData Software’. This Service Principal creation represents the registration of an application called ‘PerfectData Software’ in Azure AD.  Although the reason for registering this application is unclear, within a few days the actor registered and granted permission to another application, ‘Newsletter Software Supermailer’, and created a new inbox rule names ‘s’ on the mailbox of the hijacked account. This inbox rule moved emails meeting certain conditions to a folder named ‘RSS Subscription. The ‘Newsletter Software Supermailer’ application was likely registered by the actor to facilitate mass-mailing activity.

Immediately after these actions, Darktrace detected the actor sending out thousands of malicious emails from the account. The emails included an attachment named ‘Credit Transfer Copy.html’, which contained a suspicious link. Further investigation revealed that the customer’s network had received several fake invoice emails prior to this initial intrusion activity. Additionally, there was an unusually high volume of failed logins to the compromised account around the time of the initial access. 

Figure 1: Advanced Search logs depicting the steps which the actor took after logging in to a user’s Microsoft 365 account.
Figure 1: Advanced Search logs depicting the steps which the actor took after logging in to a user’s Microsoft 365 account.

In a separate case also observed by Darktrace in March 2023, a malicious actor was observed signing in to a Microsoft 365 account from an endpoint within the Autonomous System, AS397086 LAYER-HOST-HOUSTON. The endpoint appears to be related to the VPN service, Surfshark VPN. This login was followed by several failed and successful logins from a VPS-related within the Autonomous System, AS396073 MAJESTIC-HOSTING-01. The actor was then seen registering and assigning permissions to an application called ‘PerfectData Software’. As with the previous example, the motives for this registration are unclear. The actor proceeded to log in several more times from a Surfshark VPN endpoint, however, they were not observed carrying out any further suspicious activity. 

Advanced Search logs depicting the steps which the actor took after logging in to a user’s Microsoft 365 account.
Figure 2: Advanced Search logs depicting the steps which the actor took after logging in to a user’s Microsoft 365 account.

It was not clear in either of these examples, nor in fact any of cases observed by Darktrace, why actors had registered and assigned permissions to an application called ‘PerfectData Software’, and there do not appear to be any open-source intelligence (OSINT) resources or online literature related to the malicious usage of an application by that name. That said, there are several websites which appear to provide email migration and data recovery/backup tools under the moniker ‘PerfectData Software’. 

It is unclear whether the use of ‘PerfectData Software’ by malicious actors observed on the networks of Darktrace customers was one of these tools. However, given the nature of the tools, it is possible that the actors intended to use them to facilitate the exfiltration of email data from compromises mailboxes.

If the legitimate software ‘PerfectData’ is the application in question in these incidents, it is likely being purchased and misused by attackers for malicious purposes. It is also possible the application referenced in the incidents is a spoof of the legitimate ‘PerfectData’ software designed to masquerade a malicious application as legitimate.

Darktrace Coverage

Cases of ‘PerfectData Software’ activity chains detected by Darktrace typically began with an actor signing into an internal user’s Microsoft 365 account from a VPN or VPS-related endpoint. These login events, along with the suspicious email and/or brute-force activity which preceded them, caused the following DETECT models to breach:

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Access / Suspicious Login Attempt
  • SaaS / Compromise / Login From Rare Following Suspicious Login Attempt(s)
  • SaaS / Email Nexus / Unusual Location for SaaS and Email Activity

Subsequent activities, including inbox rule creations, registration of applications in Azure AD, and mass-mailing activity, resulted in breaches of the following DETECT models.

  • SaaS / Admin / OAuth Permission Grant 
  • SaaS / Compromise / Unusual Logic Following OAuth Grant 
  • SaaS / Admin / New Application Service Principal
  • IaaS / Admin / Azure Application Administration Activities
  • SaaS / Compliance / New Email Rule
  • SaaS / Compromiso / Inicio de sesión inusual y nueva regla de correo electrónico
  • SaaS / Email Nexus / Suspicious Internal Exchange Activity
  • SaaS / Email Nexus / Possible Outbound Email Spam
  • SaaS / Compromise / Unusual Login and Outbound Email Spam
  • SaaS / Compromise / Suspicious Login and Suspicious Outbound Email(s)
DETECT Model Breaches highlighting unusual login and 'PerfectData Software' registration activity from a malicious actor
Figure 3: DETECT Model Breaches highlighting unusual login and 'PerfectData Software' registration activity from a malicious actor.

In cases where Darktrace RESPOND™ was enabled in autonomous response mode, ‘PerfectData Software’ activity chains resulted in breaches of the following RESPOND models:

• Antigena / SaaS / Antigena Suspicious SaaS Activity Block

• Antigena / SaaS / Antigena Significant Compliance Activity Block

In response to these model breaches, Darktrace RESPOND took immediate action, performing aggressive, inhibitive actions, such as forcing the actor to log out of the SaaS platform, and disabling the user entirely. When applied autonomously, these RESPOND actions would seriously impede an attacker’s progress and minimize network disruption.

Figure 4: A RESPOND model breach created in response to a malicious actor's registration of 'PerfectData Software'

In addition, Darktrace Cyber AI Analyst was able to autonomously investigate registrations of the ‘PerfectData Software’ application and summarized its findings into digestible reports. 

A Cyber AI Analyst Incident Event log
Figure 5: A Cyber AI Analyst Incident Event log showing AI Analyst autonomously pivoting off a breach of 'SaaS / Admin / OAuth Permission Grant' to uncover details of an account hijacking.

Conclusion 

Due to the widespread adoption of Microsoft 365 services in the workplace and continued emphasis on a remote workforce, account hijackings now pose a more serious threat to organizations around the world than ever before. The cases discussed here illustrate the tendency of malicious actors to conduct their activities from endpoints associated with VPN services, while also registering new applications, like PerfectData Software, with malicious intent. 

While it was unclear exactly why the malicious actors were using ‘PerfectData Software’ as part of their account hijacking, it is clear that either the legitimate or spoofed version of the application is becoming an very likely emergent piece of threat actor tradecraft.

Darktrace DETECT’s anomaly-based approach to threat detection allowed it to recognize that the use of ‘PerfectData Software’ represented a deviation in the SaaS user’s expected behavior. While Darktrace RESPOND, when enabled in autonomous response mode, was able to quickly take preventative action against threat actors, blocking the potential use of the application for data exfiltration or other nefarious purposes.

Appendices

MITRE ATT&CK Mapping

Reconnaissance:

T1598 ­– Phishing for Information

Credential Access:

T1110 – Brute Force

Initial Access:

T1078.004 – Valid Accounts: Cloud Accounts

Command and Control:

T1105 ­– Ingress Tool Transfer

Persistence:

T1098.003 – Account Manipulation: Additional Cloud Roles 

Collection:

• T1114 – Email Collection 

Defense Evasion:

• T1564.008 ­– Hide Artifacts: Email Hiding Rules­

Lateral Movement:

T1534 – Internal Spearphishing

Unusual Source IPs

• 5.62.60[.]202  (AS198605 AVAST Software s.r.o.) 

• 160.152.10[.]215 (AS37637 Smile-Nigeria-AS)

• 197.244.250[.]155 (AS37705 TOPNET)

• 169.159.92[.]36  (AS37122 SMILE)

• 45.62.170[.]237 (AS396073 MAJESTIC-HOSTING-01)

• 92.38.180[.]49 (AS202422 G-Core Labs S.A)

• 129.56.36[.]26 (AS327952 AS-NATCOM)

• 92.38.180[.]47 (AS202422 G-Core Labs S.A.)

• 107.179.20[.]214 (AS397086 LAYER-HOST-HOUSTON)

• 45.62.170[.]31 (AS396073 MAJESTIC-HOSTING-01)

References

[1] https://www.investing.com/academy/statistics/microsoft-facts/

[2] https://intel471.com/blog/countering-the-problem-of-credential-theft

[3] https://darktrace.com/blog/business-email-compromise-to-mass-phishing-campaign-attack-analysis

[4] https://darktrace.com/blog/breakdown-of-a-multi-account-compromise-within-office-365

Continue reading
About the author
Sam Lister
Analista SOC

Blog

Cloud

Darktrace Integrates Self-Learning AI with Amazon Security Lake to Support Security Investigations

Default blog imageDefault blog image
31
May 2023

Darktrace has deepened its relationship with AWS by integrating its detection and response capabilities with Amazon Security Lake

This development will allow mutual customers to seamlessly combine Darktrace AI’s bespoke understanding of their organization with the Threat Intelligence offered by other security tools, and investigate all of their alerts in one central location. 

This integration will improve the value security teams get from both products, streamlining analyst workflows and improving their ability to detect and respond to the full spectrum of known and unknown cyber-threats. 

How Darktrace and Amazon Security Lake augment security teams

Amazon Security Lake is a newly-released service that automatically centralizes an organization’s security data from cloud, on-premises, and custom sources into a customer owned purpose-built data lake. Both Darktrace and Amazon Security Lake support the Open Cybersecurity Schema Framework (OCSF), an open standard to simplify, combine, and analyze security logs.  

Customers can store security logs, events, alerts, and other relevant data generated by various AWS services and security tools. By consolidating security data in a central lake, organizations can gain a holistic view of their security posture, perform advanced analytics, detect anomalies and open investigations to improve their security practices.

With Darktrace DETECT and RESPOND AI engines covering all assets across IT, OT, network, endpoint, IoT, email and cloud, organizations can augment the value of their security data lakes by feeding Darktrace’s rich and context-aware datapoints to Amazon Security Lake. 

Amazon Security Lake empowers security teams to improve the protection of your digital estate:

  • Quick and painless data normalization 
  • Fast-tracks ability to investigate, triage and respond to security events
  • Broader visibility aids more effective decision-making
  • Surfaces and prioritizes anomalies for further investigation
  • Single interface for seamless data management

How will Darktrace customers benefit?

Across the Cyber AI Loop, all Darktrace solutions have been architected with AWS best practices in mind. With this integration, Darktrace is bringing together its understanding of ‘self’ for every organization with the centralized data visibility of the Amazon Security Lake. Darktrace’s unique approach to cyber security, powered by groundbreaking AI research, delivers a superior dataset based on a deep and interconnected understanding of the enterprise. 

Where other cyber security solutions are trained to identify threats based on historical attack data and techniques, Darktrace DETECT gains a bespoke understanding of every digital environment, continuously analyzing users, assets, devices and the complex relationships between them. Our AI analyzes thousands of metrics to reveal subtle deviations that may signal an evolving issue – even unknown techniques and novel malware. It distinguishes between malicious and benign behavior, identifying harmful activity that typically goes unnoticed. This rich dataset is fed into RESPOND, which takes precise action to neutralize threats against any and every asset, no matter where data resides.

Both DETECT and RESPOND are supported by Darktrace Self-Learning AI, which provides full, real-time visibility into an organization’s systems and data. This always-on threat analysis already makes humans better at cyber security, improving decisions and outcomes based on total visibility of the digital ecosystem, supporting human performance with AI coverage and empowering security teams to proactively protect critical assets.  

Converting Darktrace alerts to the Amazon Security Lake Open Cybersecurity Schema Framework (OCSF) supplies the Security Operations Center (SOC) and incident response team with contextualized data, empowering them to accelerate their investigation, triage and response to potential cyber threats. 

Darktrace is available for purchase on the AWS Marketplace.

Learn more about how Darktrace provides full-coverage, AI-powered cloud security for AWS, or see how our customers use Darktrace in their AWS cloud environments.

Continue reading
About the author
Nabil Zoldjalali
VP, Innovación Tecnológica

Artículos relacionados

No se ha encontrado ningún artículo.

Buenas noticias para su negocio.
Malas noticias para los malos.

Inicie su prueba gratuita

Inicie su prueba gratuita

Entrega flexible
Puedes instalarlo virtualmente o con hardware.
Instalación rápida
Sólo 1 hora de instalación - y aún menos para una prueba de seguridad del correo electrónico.
Elige tu viaje
Pruebe IA de autoaprendizaje donde más lo necesite, incluyendo la nube, la red o el correo electrónico.
Sin compromiso
Acceso completo al visualizador de amenazas Darktrace y a tres informes de amenazas a medida, sin obligación de compra.
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
¡Ups! Algo salió mal al enviar el formulario.

Obtenga una demostración

Entrega flexible
Puedes instalarlo virtualmente o con hardware.
Instalación rápida
Sólo 1 hora de instalación - y aún menos para una prueba de seguridad del correo electrónico.
Elige tu viaje
Pruebe IA de autoaprendizaje donde más lo necesite, incluyendo la nube, la red o el correo electrónico.
Sin compromiso
Acceso completo al visualizador de amenazas Darktrace y a tres informes de amenazas a medida, sin obligación de compra.
Gracias. Hemos recibido su envío.
¡Ups! Algo salió mal al enviar el formulario.