Blog

Dentro del SOC

Compromiso del correo electrónico empresarial con una campaña de phishing masivo: Análisis del ataque

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Abril 2022
20
Abril 2022
Este blog detalla el impacto de una campaña de phishing distribuido contra una empresa de servicios financieros, y destaca algunas de las herramientas analíticas de Darktraceque pueden ayudar a los equipos de seguridad a investigar amenazas similares.

Es habitual que los atacantes envíen grandes volúmenes de correos maliciosos desde las cuentas de correo electrónico que comprometen. Antes de llevar a cabo esta actividad de envío masivo de correos electrónicos, hay pasos preparatorios predecibles que los atacantes realizan, como el registro de aplicaciones de envío masivo de correos electrónicos y la creación de nuevas reglas de bandeja de entrada. En este blog, proporcionaremos detalles de un ataque observado en febrero de 2022 en el que un actor de la amenaza llevó a cabo un exitoso ataque de correo masivo en una empresa financiera con sede en África.

Resumen del ataque

En febrero de 2022, un atacante intentó infiltrarse en el entorno de correo electrónico de una empresa de servicios financieros con sede en África. A principios de febrero, el atacante probablemente consiguió introducirse en el entorno de correo electrónico de la empresa engañando a un usuario interno para que introdujera las credenciales de su cuenta de correo electrónico corporativa en una página de phishing. A lo largo de la semana siguiente, el atacante utilizó las credenciales de la cuenta comprometida para llevar a cabo diversas actividades, como el registro de una aplicación de correo masivo y la creación de una nueva regla de bandeja de entrada.

Después de dar estos pasos preparatorios, el atacante pasó a enviar grandes volúmenes de correos electrónicos de phishing desde la cuenta de correo electrónico del usuario interno. El atacante obtuvo entonces las credenciales de varias cuentas corporativas internas más. Utilizó las credenciales de una de estas cuentas para llevar a cabo pasos preparatorios similares (registrar una aplicación de correo masivo y crear una nueva regla de bandeja de entrada). Tras realizar estos pasos, el atacante volvió a enviar grandes volúmenes de correos electrónicos de phishing desde la cuenta. En este punto, el cliente solicitó la asistencia del SOC de Darktracepara ayudar a la investigación, y la intrusión fue consecuentemente contenida por la compañía.

Dado que el atacante llevó a cabo sus actividades utilizando una VPN y un servicio en la nube de Amazon, los puntos finales desde los que se realizaron las actividades no sirvieron como indicadores especialmente útiles de un ataque. Sin embargo, antes de enviar los correos electrónicos de phishing desde las cuentas de los usuarios internos, el atacante llevó a cabo otras actividades preparatorias predecibles. Uno de los principales objetivos de este blog es destacar que estos comportamientos sirven como valiosos indicios de preparación para una actividad de envío masivo de correos electrónicos.

Cronología del ataque

Figura 1: Cronología de la intrusión

El 3 de febrero, el atacante envió un correo electrónico de phishing a la cuenta corporativa de un empleado. El correo electrónico se envió desde la cuenta corporativa de un empleado de una empresa con vínculos comerciales con la empresa víctima. Es probable que el atacante haya comprometido esta cuenta antes de enviar el correo electrónico de phishing desde ella. El correo electrónico de phishing en cuestión decía ser un recordatorio de pago atrasado. Dentro del correo electrónico, había un enlace oculto tras el texto "ver factura". El nombre de host de la URL del enlace de phishing era un subdominio de questionpro[.]eu, una plataforma de encuestas en línea. La página a la que hacía referencia la URL era una página de inicio de sesión falsa de Microsoft Outlook.

Figura 2: Destino del enlace de phishing dentro del correo electrónico enviado por el atacante

Antigena Email, la solución de seguridad de correo electrónico de Darktrace, identificó la estructura lingüística altamente inusual del correo electrónico, dada su comprensión de lo "normal" para ese remitente. Esto se reflejó en una puntuación de desplazamiento de inducción de 100. Sin embargo, en este caso, la URL original del enlace de phishing fue reescrita por el servicio de protección de URL de Mimecast de forma que la URL completa era imposible de extraer. En consecuencia, Antigena Email no sabía cuál era la URL original del enlace. Como el enlace fue reescrito por el servicio de protección de URL de Mimecast, el destinatario del correo electrónico habrá recibido una notificación de advertencia en su navegador al hacer clic en el enlace. Parece que el destinatario ignoró la advertencia y, en consecuencia, divulgó las credenciales de su cuenta de correo electrónico al atacante.

Para que Antigena Email retenga un correo electrónico del buzón de un usuario, debe juzgar con un alto grado de confianza que el correo electrónico es malicioso. En los casos en los que el correo electrónico no contiene archivos adjuntos o enlaces sospechosos, es difícil que Antigena Email obtenga esos altos grados de confianza, a menos que el correo electrónico muestre claros indicadores maliciosos independientes de la carga útil, como indicadores de suplantación de identidad o indicadores de extorsión. En este caso, el correo electrónico, visto por Antigena Email, no contenía ningún enlace o adjunto sospechoso (ya que Mimecast había reescrito el enlace sospechoso) y el correo electrónico no contenía ningún indicador de suplantación o extorsión.

Figura 3: La elevada puntuación de cambio de inducción del correo electrónico pone de manifiesto que el contenido lingüístico y la estructura del correo electrónico eran inusuales para el remitente del mismo

Poco después de recibir el correo electrónico, se observó que el dispositivo corporativo del usuario interno realizaba conexiones SSL al phishing questionpro[.]eu endpoint. Es probable que el usuario divulgara las credenciales de su cuenta de correo electrónico durante estas conexiones.

Figura 4: La captura de pantalla anterior -obtenida de Advanced Search- muestra las conexiones realizadas por el dispositivo del propietario de la cuenta el 3 de febrero

Between February 3 and February 7, the attacker logged into the user’s email account several times. Since these logins were carried out using a common VPN service, they were not identified as particularly unusual by Darktrace. However, during their login sessions, the attacker exhibited behavior which was highly unusual for the email account’s owner. The attacker was observed creating an inbox rule called “ _ ” on the user’s email account,[1] as well as registering and granting permissions to a mass-mailing application called Newsletter Software SuperMailer. These steps were taken by the attacker in preparation for their subsequent mass-mailing activity.

On February 7, the attacker sent out phishing emails from the user’s account. The emails were sent to hundreds of internal and external mailboxes. The email claimed to be an overdue payment reminder and it contained a questionpro[.]eu link hidden behind the display text “view invoice”. It is likely that the inbox rule created by the attacker caused all responses to this phishing email to be deleted. Attackers regularly create inbox rules on the email accounts which they compromise to ensure that responses to the malicious emails which they distribute are hidden from the accounts’ owners.[2]

Dado que Antigena Email no tiene visibilidad de los correos electrónicos de interno a interno, el correo electrónico de phishing se entregó completamente armado a cientos de buzones internos. El 7 de febrero, después de que se enviara el correo electrónico de phishing desde la cuenta interna comprometida, se observaron más de veinte dispositivos internos que realizaban conexiones SSL a la correspondiente questionpro[.]eu endpoint, lo que indica que muchos usuarios internos habían hecho clic en el enlace de phishing y posiblemente habían revelado las credenciales de su cuenta al atacante.

Figura 5: La captura de pantalla anterior -obtenida de Advanced Search- muestra el gran volumen de conexiones realizadas por dispositivos internos al phishing endpoint

Durante los cinco días siguientes, se observó al atacante iniciar sesión en las cuentas de correo electrónico corporativo de al menos seis usuarios internos. Estos inicios de sesión se llevaron a cabo desde los mismos puntos finales de la VPN que los inicios de sesión originales del atacante. El 11 de febrero, el atacante fue observado creando una regla de bandeja de entrada llamada " , " en una de estas cuentas. Poco después, el atacante procedió a registrar y conceder permisos a la misma aplicación de correo masivo, Newsletter Software SuperMailer. Al igual que en el caso de la otra cuenta, el atacante realizó estos pasos como preparación para su posterior actividad de envío masivo de mensajes.

Figura 6: La captura de pantalla anterior -obtenida de Advanced Search- resume todas las acciones relacionadas con la aplicación de correo masivo que realizó el atacante (las cuentas han sido redactadas)

El 11 de febrero, poco después de las 08:30 (UTC), el atacante distribuyó ampliamente un correo electrónico de phishing desde la cuenta de este segundo usuario. El correo electrónico de phishing se distribuyó a cientos de buzones internos y externos. A diferencia de los otros correos electrónicos de phishing utilizados por el atacante, este decía ser una notificación de orden de compra, y contenía un archivo HTML llamado PurchaseOrder.html. Dentro de este archivo, había un enlace a una página sospechosa en el sitio de noticias de relaciones públicas (PR), everything-pr[.]com. Después de que se enviara el correo electrónico de phishing desde la cuenta interna comprometida, se observaron más de veinte dispositivos internos que realizaban conexiones SSL a la página everything-pr[.]com correspondiente endpoint, lo que indicaba que muchos usuarios internos habían abierto el archivo adjunto malicioso.

Figura 7: La captura de pantalla anterior -obtenida de Advanced Search- muestra las conexiones realizadas por los dispositivos internos a la dirección endpoint a la que se hace referencia en el archivo adjunto malicioso

El 11 de febrero, el cliente envió una solicitud de Ask the Expert (ATE) al equipo del SOC de Darktrace. La orientación proporcionada por el SOC ayudó al equipo de seguridad a contener la intrusión. El atacante consiguió mantener su presencia en el entorno de correo electrónico de la organización durante ocho días. Durante estos ocho días, el atacante envió grandes volúmenes de correos electrónicos de phishing desde dos cuentas corporativas. Antes de enviar estos correos electrónicos de phishing, el atacante llevó a cabo acciones preparatorias predecibles. Estas acciones incluían el registro de una aplicación de correo masivo en Azure AD y la creación de una regla de bandeja de entrada.

Recomendaciones de Darktrace

Hay muchos puntos de aprendizaje para esta intrusión en particular. En primer lugar, es importante estar atento a los signos de preparación para la actividad de envío masivo de correos electrónicos maliciosos. Después de que un atacante comprometa una cuenta de correo electrónico, hay varias acciones que probablemente realizará antes de enviar grandes volúmenes de correos electrónicos maliciosos. Por ejemplo, pueden crear una regla de bandeja de entrada en la cuenta, y pueden registrar una aplicación de envío masivo de correos electrónicos con Azure AD. Los modelos Darktrace SaaS / Compliance / New Email Rule y SaaS / Admin / OAuth Permission Grant están diseñados para detectar estos comportamientos.

En segundo lugar, en los casos en los que un atacante consigue enviar correos electrónicos de phishing desde una cuenta corporativa interna, se aconseja que los clientes hagan uso de la búsqueda avanzada de Darktracepara identificar a los usuarios que puedan haber divulgado las credenciales de la cuenta al atacante. El correo electrónico de phishing enviado desde la cuenta comprometida probablemente contendrá un enlace sospechoso. Una vez identificado el nombre de host del enlace, es posible pedir a la Búsqueda Avanzada que muestre todas las conexiones HTTP o SSL al host en cuestión. Si el nombre del host es www.example.com, puede hacer que la Búsqueda Avanzada muestre todas las conexiones SSL al host utilizando la consulta de Búsqueda Avanzada, @fields.server_name: "www.example.com", y puede hacer que la Búsqueda Avanzada muestre todas las conexiones HTTP al host utilizando la consulta, @fields.host: "www.example.com".

Third, it is advised that customers make use of Darktrace’s ‘watched domains’ feature[3] in cases where an attacker succeeds in sending out malicious emails from the accounts they compromise. If a hostname is added to the watched domains list, then a model named Compromise / Watched Domain will breach whenever an internal device is observed connecting to it. If Antigena Network is configured, then observed attempts to connect to the relevant host will be blocked if the hostname is added to the watched domains list with the ‘flag for Antigena’ toggle switched on. If an attacker succeeds in sending out a malicious email from an internal, corporate account, it is advised that customers add hostnames of phishing links within the email to the watched domains list and enable the Antigena flag. Doing so will cause Darktrace to identify and thwart any attempts to connect to the relevant phishing endpoints.

Figura 8: La captura de pantalla anterior -obtenida del Editor de Modelos- muestra que Antigena Network impidió que diez dispositivos internos se conectaran a puntos finales de phishing después de que los nombres de host de phishing pertinentes se añadieran a la lista de dominios vigilados el 11 de febrero

For Darktrace customers who want to find out more about phishing detection, refer here for an exclusive supplement to this blog.

Técnicas ATT&CK de MITRE observadas

Gracias a Paul Jennings por sus contribuciones.

Notas a pie de página

1. https://docs.microsoft.com/en-us/powershell/module/exchange/new-inboxrule?view=exchange-ps

2. https://www.fireeye.com/current-threats/threat-intelligence-reports/rpt-fin4.html

3. https://customerportal.darktrace.com/product-guides/main/watched-domains

DENTRO DEL SOC
Darktrace son expertos de talla mundial en inteligencia de amenazas, caza de amenazas y respuesta a incidentes, y proporcionan apoyo al SOC las 24 horas del día a miles de clientes de Darktrace en todo el mundo. Inside the SOC está redactado exclusivamente por estos expertos y ofrece un análisis de los ciberincidentes y las tendencias de las amenazas, basado en la experiencia real sobre el terreno.
AUTOR
SOBRE EL AUTOR
Shuh Chin Goh
Sam Lister
Analista SOC
Book a 1-1 meeting with one of our experts
share this article
CASOS DE USO
No se ha encontrado ningún artículo.
PRODUCTOS DESTACADOS
No se ha encontrado ningún artículo.
Cobertura básica
No se ha encontrado ningún artículo.

More in this series

No se ha encontrado ningún artículo.

Blog

Dentro del SOC

A Thorn in Attackers’ Sides: How Darktrace Uncovered a CACTUS Ransomware Infection

Default blog imageDefault blog image
24
Apr 2024

What is CACTUS Ransomware?

In May 2023, Kroll Cyber Threat Intelligence Analysts identified CACTUS as a new ransomware strain that had been actively targeting large commercial organizations since March 2023 [1]. CACTUS ransomware gets its name from the filename of the ransom note, “cAcTuS.readme.txt”. Encrypted files are appended with the extension “.cts”, followed by a number which varies between attacks, e.g. “.cts1” and “.cts2”.

As the cyber threat landscape adapts to ever-present fast-paced technological change, ransomware affiliates are employing progressively sophisticated techniques to enter networks, evade detection and achieve their nefarious goals.

How does CACTUS Ransomware work?

In the case of CACTUS, threat actors have been seen gaining initial network access by exploiting Virtual Private Network (VPN) services. Once inside the network, they may conduct internal scanning using tools like SoftPerfect Network Scanner, and PowerShell commands to enumerate endpoints, identify user accounts, and ping remote endpoints. Persistence is maintained by the deployment of various remote access methods, including legitimate remote access tools like Splashtop, AnyDesk, and SuperOps RMM in order to evade detection, along with malicious tools like Cobalt Strike and Chisel. Such tools, as well as custom scripts like TotalExec, have been used to disable security software to distribute the ransomware binary. CACTUS ransomware is unique in that it adopts a double-extortion tactic, stealing data from target networks and then encrypting it on compromised systems [2].

At the end of November 2023, cybersecurity firm Arctic Wolf reported instances of CACTUS attacks exploiting vulnerabilities on the Windows version of the business analytics platform Qlik, specifically CVE-2023-41266, CVE-2023-41265, and CVE-2023-48365, to gain initial access to target networks [3]. The vulnerability tracked as CVE-2023-41266 can be exploited to generate anonymous sessions and perform HTTP requests to unauthorized endpoints, whilst CVE-2023-41265 does not require authentication and can be leveraged to elevate privileges and execute HTTP requests on the backend server that hosts the application [2].

Darktrace’s Coverage of CACTUS Ransomware

In November 2023, Darktrace observed malicious actors leveraging the aforementioned method of exploiting Qlik to gain access to the network of a customer in the US, more than a week before the vulnerability was reported by external researchers.

Here, Qlik vulnerabilities were successfully exploited, and a malicious executable (.exe) was detonated on the network, which was followed by network scanning and failed Kerberos login attempts. The attack culminated in the encryption of numerous files with extensions such as “.cts1”, and SMB writes of the ransom note “cAcTuS.readme.txt” to multiple internal devices, all of which was promptly identified by Darktrace DETECT™.

While traditional rules and signature-based detection tools may struggle to identify the malicious use of a legitimate business platform like Qlik, Darktrace’s Self-Learning AI was able to confidently identify anomalous use of the tool in a CACTUS ransomware attack by examining the rarity of the offending device’s surrounding activity and comparing it to the learned behavior of the device and its peers.

Unfortunately for the customer in this case, Darktrace RESPOND™ was not enabled in autonomous response mode during their encounter with CACTUS ransomware meaning that attackers were able to successfully escalate their attack to the point of ransomware detonation and file encryption. Had RESPOND been configured to autonomously act on any unusual activity, Darktrace could have prevented the attack from progressing, stopping the download of any harmful files, or the encryption of legitimate ones.

Cactus Ransomware Attack Overview

Holiday periods have increasingly become one of the favoured times for malicious actors to launch their attacks, as they can take advantage of the festive downtime of organizations and their security teams, and the typically more relaxed mindset of employees during this period [4].

Following this trend, in late November 2023, Darktrace began detecting anomalous connections on the network of a customer in the US, which presented multiple indicators of compromise (IoCs) and tactics, techniques and procedures (TTPs) associated with CACTUS ransomware. The threat actors in this case set their attack in motion by exploiting the Qlik vulnerabilities on one of the customer’s critical servers.

Darktrace observed the server device making beaconing connections to the endpoint “zohoservice[.]net” (IP address: 45.61.147.176) over the course of three days. This endpoint is known to host a malicious payload, namely a .zip file containing the command line connection tool PuttyLink [5].

Darktrace’s Cyber AI Analyst was able to autonomously identify over 1,000 beaconing connections taking place on the customer’s network and group them together, in this case joining the dots in an ongoing ransomware attack. AI Analyst recognized that these repeated connections to highly suspicious locations were indicative of malicious command-and-control (C2) activity.

Cyber AI Analyst Incident Log showing the offending device making over 1,000 connections to the suspicious hostname “zohoservice[.]net” over port 8383, within a specific period.
Figure 1: Cyber AI Analyst Incident Log showing the offending device making over 1,000 connections to the suspicious hostname “zohoservice[.]net” over port 8383, within a specific period.

The infected device was then observed downloading the file “putty.zip” over a HTTP connection using a PowerShell user agent. Despite being labelled as a .zip file, Darktrace’s detection capabilities were able to identify this as a masqueraded PuttyLink executable file. This activity resulted in multiple Darktrace DETECT models being triggered. These models are designed to look for suspicious file downloads from endpoints not usually visited by devices on the network, and files whose types are masqueraded, as well as the anomalous use of PowerShell. This behavior resembled previously observed activity with regards to the exploitation of Qlik Sense as an intrusion technique prior to the deployment of CACTUS ransomware [5].

The downloaded file’s URI highlighting that the file type (.exe) does not match the file's extension (.zip). Information about the observed PowerShell user agent is also featured.
Figure 2: The downloaded file’s URI highlighting that the file type (.exe) does not match the file's extension (.zip). Information about the observed PowerShell user agent is also featured.

Following the download of the masqueraded file, Darktrace observed the initial infected device engaging in unusual network scanning activity over the SMB, RDP and LDAP protocols. During this activity, the credential, “service_qlik” was observed, further indicating that Qlik was exploited by threat actors attempting to evade detection. Connections to other internal devices were made as part of this scanning activity as the attackers attempted to move laterally across the network.

Numerous failed connections from the affected server to multiple other internal devices over port 445, indicating SMB scanning activity.
Figure 3: Numerous failed connections from the affected server to multiple other internal devices over port 445, indicating SMB scanning activity.

The compromised server was then seen initiating multiple sessions over the RDP protocol to another device on the customer’s network, namely an internal DNS server. External researchers had previously observed this technique in CACTUS ransomware attacks where an RDP tunnel was established via Plink [5].

A few days later, on November 24, Darktrace identified over 20,000 failed Kerberos authentication attempts for the username “service_qlik” being made to the internal DNS server, clearly representing a brute-force login attack. There is currently a lack of open-source intelligence (OSINT) material definitively listing Kerberos login failures as part of a CACTUS ransomware attack that exploits the Qlik vulnerabilities. This highlights Darktrace’s ability to identify ongoing threats amongst unusual network activity without relying on existing threat intelligence, emphasizing its advantage over traditional security detection tools.

Kerberos login failures being carried out by the initial infected device. The destination device detected was an internal DNS server.
Figure 4: Kerberos login failures being carried out by the initial infected device. The destination device detected was an internal DNS server.

In the month following these failed Kerberos login attempts, between November 26 and December 22, Darktrace observed multiple internal devices encrypting files within the customer’s environment with the extensions “.cts1” and “.cts7”. Devices were also seen writing ransom notes with the file name “cAcTuS.readme.txt” to two additional internal devices, as well as files likely associated with Qlik, such as “QlikSense.pdf”. This activity detected by Darktrace confirmed the presence of a CACTUS ransomware infection that was spreading across the customer’s network.

The model, 'Ransom or Offensive Words Written to SMB', triggered in response to SMB file writes of the ransom note, ‘cAcTuS.readme.txt’, that was observed on the customer’s network.
Figure 5: The model, 'Ransom or Offensive Words Written to SMB', triggered in response to SMB file writes of the ransom note, ‘cAcTuS.readme.txt’, that was observed on the customer’s network.
CACTUS ransomware extensions, “.cts1” and “.cts7”, being appended to files on the customer’s network.
Figure 6: CACTUS ransomware extensions, “.cts1” and “.cts7”, being appended to files on the customer’s network.

Following this initial encryption activity, two affected devices were observed attempting to remove evidence of this activity by deleting the encrypted files.

Attackers attempting to remove evidence of their activity by deleting files with appendage “.cts1”.
Figure 7: Attackers attempting to remove evidence of their activity by deleting files with appendage “.cts1”.

Conclusion

In the face of this CACTUS ransomware attack, Darktrace’s anomaly-based approach to threat detection enabled it to quickly identify multiple stages of the cyber kill chain occurring in the customer’s environment. These stages ranged from ‘initial access’ by exploiting Qlik vulnerabilities, which Darktrace was able to detect before the method had been reported by external researchers, to ‘actions on objectives’ by encrypting files. Darktrace’s Self-Learning AI was also able to detect a previously unreported stage of the attack: multiple Kerberos brute force login attempts.

If Darktrace’s autonomous response capability, RESPOND, had been active and enabled in autonomous response mode at the time of this attack, it would have been able to take swift mitigative action to shut down such suspicious activity as soon as it was identified by DETECT, effectively containing the ransomware attack at the earliest possible stage.

Learning a network’s ‘normal’ to identify deviations from established patterns of behaviour enables Darktrace’s identify a potential compromise, even one that uses common and often legitimately used administrative tools. This allows Darktrace to stay one step ahead of the increasingly sophisticated TTPs used by ransomware actors.

Credit to Tiana Kelly, Cyber Analyst & Analyst Team Lead, Anna Gilbertson, Cyber Analyst

Appendices

References

[1] https://www.kroll.com/en/insights/publications/cyber/cactus-ransomware-prickly-new-variant-evades-detection

[2] https://www.bleepingcomputer.com/news/security/cactus-ransomware-exploiting-qlik-sense-flaws-to-breach-networks/

[3] https://explore.avertium.com/resource/new-ransomware-strains-cactus-and-3am

[4] https://www.soitron.com/cyber-attackers-abuse-holidays/

[5] https://arcticwolf.com/resources/blog/qlik-sense-exploited-in-cactus-ransomware-campaign/

Darktrace DETECT Models

Compromise / Agent Beacon (Long Period)

Anomalous Connection / PowerShell to Rare External

Device / New PowerShell User Agent

Device / Suspicious SMB Scanning Activity

Anomalous File / EXE from Rare External Location

Anomalous Connection / Unusual Internal Remote Desktop

User / Kerberos Password Brute Force

Compromise / Ransomware / Ransom or Offensive Words Written to SMB

Unusual Activity / Anomalous SMB Delete Volume

Anomalous Connection / Multiple Connections to New External TCP Port

Compromise / Slow Beaconing Activity To External Rare  

Compromise / SSL Beaconing to Rare Destination  

Anomalous Server Activity / Rare External from Server  

Compliance / Remote Management Tool On Server

Compromise / Agent Beacon (Long Period)  

Compromise / Suspicious File and C2  

Device / Internet Facing Device with High Priority Alert  

Device / Large Number of Model Breaches  

Anomalous File / Masqueraded File Transfer

Anomalous File / Internet facing System File Download  

Anomalous Server Activity / Outgoing from Server

Device / Initial Breach Chain Compromise  

Compromise / Agent Beacon (Medium Period)  

Compromise / Agent Beacon (Long Period)  

List of IoCs

IoC - Type - Description

zohoservice[.]net: 45.61.147[.]176 - Domain name: IP Address - Hosting payload over HTTP

Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.17763.2183 - User agent -PowerShell user agent

.cts1 - File extension - Malicious appendage

.cts7- File extension - Malicious appendage

cAcTuS.readme.txt - Filename -Ransom note

putty.zip – Filename - Initial payload: ZIP containing PuTTY Link

MITRE ATT&CK Mapping

Tactic - Technique  - SubTechnique

Web Protocols: COMMAND AND CONTROL - T1071 -T1071.001

Powershell: EXECUTION - T1059 - T1059.001

Exploitation of Remote Services: LATERAL MOVEMENT - T1210 – N/A

Vulnerability Scanning: RECONAISSANCE     - T1595 - T1595.002

Network Service Scanning: DISCOVERY - T1046 - N/A

Malware: RESOURCE DEVELOPMENT - T1588 - T1588.001

Drive-by Compromise: INITIAL ACCESS - T1189 - N/A

Remote Desktop Protocol: LATERAL MOVEMENT – 1021 -T1021.001

Brute Force: CREDENTIAL ACCESS        T – 1110 - N/A

Data Encrypted for Impact: IMPACT - T1486 - N/A

Data Destruction: IMPACT - T1485 - N/A

File Deletion: DEFENSE EVASION - T1070 - T1070.004

Continue reading
About the author
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst

Blog

No se ha encontrado ningún artículo.

The State of AI in Cybersecurity: How AI will impact the cyber threat landscape in 2024

Default blog imageDefault blog image
22
Apr 2024

About the AI Cybersecurity Report

We surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog is continuing the conversation from our last blog post “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on the cyber threat landscape.

To access the full report click here.

Are organizations feeling the impact of AI-powered cyber threats?

Nearly three-quarters (74%) state AI-powered threats are now a significant issue. Almost nine in ten (89%) agree that AI-powered threats will remain a major challenge into the foreseeable future, not just for the next one to two years.

However, only a slight majority (56%) thought AI-powered threats were a separate issue from traditional/non AI-powered threats. This could be the case because there are few, if any, reliable methods to determine whether an attack is AI-powered.

Identifying exactly when and where AI is being applied may not ever be possible. However, it is possible for AI to affect every stage of the attack lifecycle. As such, defenders will likely need to focus on preparing for a world where threats are unique and are coming faster than ever before.

a hypothetical cyber attack augmented by AI at every stage

Are security stakeholders concerned about AI’s impact on cyber threats and risks?

The results from our survey showed that security practitioners are concerned that AI will impact organizations in a variety of ways. There was equal concern associated across the board – from volume and sophistication of malware to internal risks like leakage of proprietary information from employees using generative AI tools.

What this tells us is that defenders need to prepare for a greater volume of sophisticated attacks and balance this with a focus on cyber hygiene to manage internal risks.

One example of a growing internal risks is shadow AI. It takes little effort for employees to adopt publicly-available text-based generative AI systems to increase their productivity. This opens the door to “shadow AI”, which is the use of popular AI tools without organizational approval or oversight. Resulting security risks such as inadvertent exposure of sensitive information or intellectual property are an ever-growing concern.

Are organizations taking strides to reduce risks associated with adoption of AI in their application and computing environment?

71.2% of survey participants say their organization has taken steps specifically to reduce the risk of using AI within its application and computing environment.

16.3% of survey participants claim their organization has not taken these steps.

These findings are good news. Even as enterprises compete to get as much value from AI as they can, as quickly as possible, they’re tempering their eager embrace of new tools with sensible caution.

Still, responses varied across roles. Security analysts, operators, administrators, and incident responders are less likely to have said their organizations had taken AI risk mitigation steps than respondents in other roles. In fact, 79% of executives said steps had been taken, and only 54% of respondents in hands-on roles agreed. It seems that leaders believe their organizations are taking the needed steps, but practitioners are seeing a gap.

Do security professionals feel confident in their preparedness for the next generation of threats?

A majority of respondents (six out of every ten) believe their organizations are inadequately prepared to face the next generation of AI-powered threats.

The survey findings reveal contrasting perceptions of organizational preparedness for cybersecurity threats across different regions and job roles. Security administrators, due to their hands-on experience, express the highest level of skepticism, with 72% feeling their organizations are inadequately prepared. Notably, respondents in mid-sized organizations feel the least prepared, while those in the largest companies feel the most prepared.

Regionally, participants in Asia-Pacific are most likely to believe their organizations are unprepared, while those in Latin America feel the most prepared. This aligns with the observation that Asia-Pacific has been the most impacted region by cybersecurity threats in recent years, according to the IBM X-Force Threat Intelligence Index.

The optimism among Latin American respondents could be attributed to lower threat volumes experienced in the region, but it's cautioned that this could change suddenly (1).

What are biggest barriers to defending against AI-powered threats?

The top-ranked inhibitors center on knowledge and personnel. However, issues are alluded to almost equally across the board including concerns around budget, tool integration, lack of attention to AI-powered threats, and poor cyber hygiene.

The cybersecurity industry is facing a significant shortage of skilled professionals, with a global deficit of approximately 4 million experts (2). As organizations struggle to manage their security tools and alerts, the challenge intensifies with the increasing adoption of AI by attackers. This shift has altered the demands on security teams, requiring practitioners to possess broad and deep knowledge across rapidly evolving solution stacks.

Educating end users about AI-driven defenses becomes paramount as organizations grapple with the shortage of professionals proficient in managing AI-powered security tools. Operationalizing machine learning models for effectiveness and accuracy emerges as a crucial skill set in high demand. However, our survey highlights a concerning lack of understanding among cybersecurity professionals regarding AI-driven threats and the use of AI-driven countermeasures indicating a gap in keeping pace with evolving attacker tactics.

The integration of security solutions remains a notable problem, hindering effective defense strategies. While budget constraints are not a primary inhibitor, organizations must prioritize addressing these challenges to bolster their cybersecurity posture. It's imperative for stakeholders to recognize the importance of investing in skilled professionals and integrated security solutions to mitigate emerging threats effectively.

To access the full report click here.

References

1. IBM, X-Force Threat Intelligence Index 2024, Available at: https://www.ibm.com/downloads/cas/L0GKXDWJ

2. ISC2, Cybersecurity Workforce Study 2023, Available at: https://media.isc2.org/-/media/Project/ISC2/Main/Media/ documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf?rev=28b46de71ce24e6ab7705f6e3da8637e

Continue reading
About the author
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Inicie su prueba gratuita
Darktrace AI protecting a business from cyber threats.