Blog

Dentro del SOC

Qakbot Resurgence: Evolving along with the emerging threat landscape

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
30
Jan 2023
30
Jan 2023
In June 2022, Darktrace observed a surge in Qakbot infections across its client base. These infections, despite arising from novel delivery methods, resulted in unusual patterns of network traffic which Darktrace/Network was able to detect and respond to.

In June 2022, Darktrace observed a surge in Qakbot infections across its client base. The detected Qakbot infections, which in some cases led to the delivery of secondary payloads such as Cobalt Strike and Dark VNC, were initiated through novel delivery methods birthed from Microsoft’s default blocking of XL4 and VBA macros in early 2022 [1]/[2]/[3]/[4] and from the public disclosure in May 2022 [5] of the critical Follina vulnerability (CVE-2022-30190) in Microsoft Support Diagnostic Tool (MSDT). Despite the changes made to Qakbot’s delivery methods, Qakbot infections still inevitably resulted in unusual patterns of network activity. In this blog, we will provide details of these network activities, along with Darktrace/Network’s coverage of them. 

Qakbot Background 

Qakbot emerged in 2007 as a banking trojan designed to steal sensitive data such as banking credentials.  Since then, Qakbot has developed into a highly modular triple-threat powerhouse used to not only steal information, but to also drop malicious payloads and to serve as a backdoor. The malware is also versatile, with its delivery methods regularly changing in response to the changing threat landscape.  

Threat actors deliver Qakbot through email-based delivery methods. In the first half of 2022, Microsoft started rolling out versions of Office which block XL4 and VBA macros by default. Prior to this change, Qakbot email campaigns typically consisted in the spreading of deceitful emails with Office attachments containing malicious macros.  Opening these attachments and then enabling the macros within them would lead users’ devices to install Qakbot.  

Actors who deliver Qakbot onto users’ devices may either sell their access to other actors, or they may leverage Qakbot’s capabilities to pursue their own objectives [6]. A common objective of actors that use Qakbot is to drop Cobalt Strike beacons onto infected systems. Actors will then leverage the interactive access provided by Cobalt Strike to conduct extensive reconnaissance and lateral movement activities in preparation for widespread ransomware deployment. Qakbot’s close ties to ransomware activity, along with its modularity and versatility, make the malware a significant threat to organisations’ digital environments.

Activity Details and Qakbot Delivery Methods

During the month of June, variationsof the following pattern of network activity were observed in several client networks:

1.     User’s device contacts an email service such as outlook.office[.]com or mail.google[.]com

2.     User’s device makes an HTTP GET request to 185.234.247[.]119 with an Office user-agent string and a ‘/123.RES' target URI. The request is responded to with an HTML file containing a exploit for the Follina vulnerability (CVE-2022-30190)

3.     User’s device makes an HTTP GET request with a cURL User-Agent string and a target URI ending in ‘.dat’ to an unusual external endpoint. The request is responded to with a Qakbot DLL sample

4.     User’s device contacts Qakbot Command and Control servers over ports such as 443, 995, 2222, and 32101

In some cases, only steps 1 and 4 were seen, and in other cases, only steps 1, 3, and 4 were seen. The different variations of the pattern correspond to different Qakbot delivery methods.

Figure 1: Geographic distribution of Darktrace clients affected by Qakbot

Qakbot is known to be delivered via malicious email attachments [7]. The Qakbot infections observed across Darktrace’s client base during June were likely initiated through HTML smuggling — a method which consists in embedding malicious code into HTML attachments. Based on open-source reporting [8]-[14] and on observed patterns of network traffic, we assess with moderate to high confidence that the Qakbot infections observed across Darktrace’s client base during June 2022 were initiated via one of the following three methods:

  • User opens HTML attachment which drops a ZIP file on their device. ZIP file contains a LNK file, which when opened, causes the user's device to make an external HTTP GET request with a cURL User-Agent string and a '.dat' target URI. If successful, the HTTP GET request is responded to with a Qakbot DLL.
  • User opens HTML attachment which drops a ZIP file on their device. ZIP file contains a docx file, which when opened, causes the user's device to make an HTTP GET request to 185.234.247[.]119 with an Office user-agent string and a ‘/123.RES' target URI. If successful, the HTTP GET request is responded to with an HTML file containing a Follina exploit. The Follina exploit causes the user's device to make an external HTTP GET with a '.dat' target URI. If successful, the HTTP GET request is responded to with a Qakbot DL.
  • User opens HTML attachment which drops a ZIP file on their device. ZIP file contains a Qakbot DLL and a LNK file, which when opened, causes the DLL to run.

The usage of these delivery methods illustrate how threat actors are adopting to a post-macro world [4], with their malware delivery techniques shifting from usage of macros-embedding Office documents to usage of container files, Windows Shortcut (LNK) files, and exploits for novel vulnerabilities. 

The Qakbot infections observed across Darktrace’s client base did not only vary in terms of their delivery methods — they also differed in terms of their follow-up activities. In some cases, no follow-up activities were observed. In other cases, however, actors were seen leveraging Qakbot to exfiltrate data and to deliver follow-up payloads such as Cobalt Strike and Dark VNC.  These follow-up activities were likely preparation for the deployment of ransomware. Darktrace’s early detection of Qakbot activity within client environments enabled security teams to take actions which likely prevented the deployment of ransomware. 

Darktrace Coverage 

Users’ interactions with malicious email attachments typically resulted in their devices making cURL HTTP GET requests with empty Host headers and target URIs ending in ‘.dat’ (such as as ‘/24736.dat’ and ‘/noFindThem.dat’) to rare, external endpoints. In cases where the Follina vulnerability is believed to have been exploited, users’ devices were seen making HTTP GET requests to 185.234.247[.]119 with a Microsoft Office User-Agent string before making cURL HTTP GET requests. The following Darktrace DETECT/Network models typically breached as a result of these HTTP activities:

  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / New User Agent and New IP
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric Exe Download 

These DETECT models were able to capture the unusual usage of Office and cURL User-Agent strings on affected devices, as well as the downloads of the Qakbot DLL from rare external endpoints. These models look for unusual activity that falls outside a device’s usual pattern of behavior rather than for activity involving User-Agent strings, URIs, files, and external IPs which are known to be malicious.

When enabled, Darktrace RESPOND/Network autonomously intervened, taking actions such as ‘Enforce group pattern of life’ and ‘Block connections’ to quickly intercept connections to Qakbot infrastructure. 

Figure 2: This ‘New User Agent to IP Without Hostname’ model breach highlights an example of Darktrace’s detection of a device attempting to download a file containing a Follina exploit
Figure 3: This ‘New User Agent to IP Without Hostname’ model breach highlights an example of Darktrace’s detection of a device attempting to download Qakbot
Figure 4: The Event Log for an infected device highlights the moment a connection to the endpoint outlook.office365[.]com was made. This was followed by an executable file transfer detection and use of a new User-Agent, curl/7.9.1

After installing Qakbot, users’ devices started making connections to Command and Control (C2) endpoints over ports such as 443, 22, 990, 995, 1194, 2222, 2078, 32101. Cobalt Strike and Dark VNC may have been delivered over some of these C2 connections, as evidenced by subsequent connections to endpoints associated with Cobalt Strike and Dark VNC. These C2 activities typically caused the following Darktrace DETECT/Network models to breach: 

  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Compromise / Suspicious Beaconing Behavior
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Large Number of Suspicious Successful Connections
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / SSL or HTTP Beacon
  • Anomalous Connection / Rare External SSL Self-Signed
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Compromise / SSL Beaconing to Rare Destination
  • Compromise / Suspicious TLS Beaconing To Rare External
  • Compromise / Slow Beaconing Activity To External Rare
Figure 5: This Device Event Log illustrates the Command and Control activity displayed by a Qakbot-infected device

The Darktrace DETECT/Network models which detected these C2 activities do not look for devices making connections to known, malicious endpoints. Rather, they look for devices deviating from their ordinary patterns of activity, making connections to external endpoints which internal devices do not usually connect to, over ports which devices do not normally connect over. 

In some cases, actors were seen exfiltrating data from Qakbot-infected systems and dropping Cobalt Strike in order to conduct extensive discovery. These exfiltration activities typically caused the following models to breach:

  • Anomalous Connection / Data Sent to Rare Domain
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Low and Slow Exfiltration to IP
  • Unusual Activity / Unusual External Data to New Endpoints

The reconnaissance and brute-force activities carried out by actors typically resulted in breaches of the following models:

  • Device / ICMP Address Scan
  • Device / Network Scan
  • Anomalous Connection / SMB Enumeration
  • Device / New or Uncommon WMI Activity
  •  Unusual Activity / Possible RPC Recon Activity
  • Device / Possible SMB/NTLM Reconnaissance
  •  Device / SMB Lateral Movement
  •  Device / Increase in New RPC Services
  •  Device / Spike in LDAP Activity
  • Device / Possible SMB/NTLM Brute Force
  • Device / SMB Session Brute Force (Non-Admin)
  • Device / SMB Session Brute Force (Admin)
  • Device / Anomalous NTLM Brute Force

Conclusion

June 2022 saw Qakbot swiftly mould itself in response to Microsoft's default blocking of macros and the public disclosure of the Follina vulnerability. The evolution of the threat landscape in the first half of 2022 caused Qakbot to undergo changes in its delivery methods, shifting from delivery via macros-based methods to delivery via HTML smuggling methods. The effectiveness of these novel delivery methods where highlighted in Darktrace's client base, where large volumes of Qakbot infections were seen during June 2022. Leveraging Self-Learning AI, Darktrace DETECT/Network was able to detect the unusual network behaviors which inevitably resulted from these novel Qakbot infections. Given that the actors behind these Qakbot infections were likely seeking to deploy ransomware, these detections, along with Darktrace RESPOND/Network’s autonomous interventions, ultimately helped to protect affected Darktrace clients from significant business disruption.  

Appendices

List of IOCs

References

[1] https://techcommunity.microsoft.com/t5/excel-blog/excel-4-0-xlm-macros-now-restricted-by-default-for-customer/ba-p/3057905

[2] https://techcommunity.microsoft.com/t5/microsoft-365-blog/helping-users-stay-safe-blocking-internet-macros-by-default-in/ba-p/3071805

[3] https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked

[4] https://www.proofpoint.com/uk/blog/threat-insight/how-threat-actors-are-adapting-post-macro-world

[5] https://twitter.com/nao_sec/status/1530196847679401984

[6] https://www.microsoft.com/security/blog/2021/12/09/a-closer-look-at-qakbots-latest-building-blocks-and-how-to-knock-them-down/

[7] https://www.zscaler.com/blogs/security-research/rise-qakbot-attacks-traced-evolving-threat-techniques

[8] https://www.esentire.com/blog/resurgence-in-qakbot-malware-activity

[9] https://www.fortinet.com/blog/threat-research/new-variant-of-qakbot-spread-by-phishing-emails

[10] https://twitter.com/pr0xylife/status/1539320429281615872

[11] https://twitter.com/max_mal_/status/1534220832242819072

[12] https://twitter.com/1zrr4h/status/1534259727059787783?lang=en

[13] https://isc.sans.edu/diary/rss/28728

[14] https://www.fortiguard.com/threat-signal-report/4616/qakbot-delivered-through-cve-2022-30190-follina

Credit to:  Hanah Darley, Cambridge Analyst Team Lead and Head of Threat Research and Sam Lister, Senior Cyber Analyst

DENTRO DEL SOC
Darktrace son expertos de talla mundial en inteligencia de amenazas, caza de amenazas y respuesta a incidentes, y proporcionan apoyo al SOC las 24 horas del día a miles de clientes de Darktrace en todo el mundo. Inside the SOC está redactado exclusivamente por estos expertos y ofrece un análisis de los ciberincidentes y las tendencias de las amenazas, basado en la experiencia real sobre el terreno.
AUTOR
SOBRE EL AUTOR
Nahisha Nobregas
Analista SOC
Book a 1-1 meeting with one of our experts
share this article
CASOS DE USO
No se ha encontrado ningún artículo.
Cobertura básica

More in this series

No se ha encontrado ningún artículo.

Blog

Email

Looking Beyond Secure Email Gateways with the Latest Innovations to Darktrace/Email

Default blog imageDefault blog image
09
Apr 2024

Organizations Should Demand More from their Email Security

In response to a more intricate threat landscape, organizations should view email security as a critical component of their defense-in-depth strategy, rather than defending the inbox alone with a traditional Secure Email Gateway (SEG). Organizations need more than a traditional gateway – that doubles, instead of replaces, the capabilities provided by native security vendor – and require an equally granular degree of analysis across all messaging, including inbound, outbound, and lateral mail, plus Teams messages.  

Darktrace/Email is the industry’s most advanced cloud email security, powered by Self-Learning AI. It combines AI techniques to exceed the accuracy and efficiency of leading security solutions, and is the only security built to elevate, not duplicate, native email security.  

With its largest update ever, Darktrace/Email introduces the following innovations, finally allowing security teams to look beyond secure email gateways with autonomous AI:

  • AI-augmented data loss prevention to stop the entire spectrum of outbound mail threats
  • an easy way to deploy DMARC quickly with AI
  • major enhancements to streamline SOC workflows and increase the detection of sophisticated phishing links
  • expansion of Darktrace’s leading AI prevention to lateral mail, account compromise and Microsoft Teams

What’s New with Darktrace/Email  

Data Loss Prevention  

Block the entire spectrum of outbound mail threats with advanced data loss prevention that builds on tags in native email to stop unknown, accidental, and malicious data loss

Darktrace understands normal at individual user, group and organization level with a proven AI that detects abnormal user behavior and dynamic content changes. Using this understanding, Darktrace/Email actions outbound emails to stop unknown, accidental and malicious data loss.  

Traditional DLP solutions only take into account classified data, which relies on the manual input of labelling each data piece, or creating rules to catch pattern matches that try to stop data of certain types leaving the organization. But in today’s world of constantly changing data, regular expression and fingerprinting detection are no longer enough.

  • Human error – Because it understands normal for every user, Darktrace/Email can recognize cases of misdirected emails. Even if the data is correctly labelled or insensitive, Darktrace recognizes when the context in which it is being sent could be a case of data loss and warns the user.  
  • Unclassified data – Whereas traditional DLP solutions can only take action on classified data, Darktrace analyzes the range of data that is either pending labels or can’t be labeled with typical capabilities due to its understanding of the content and context of every email.  
  • Insider threat – If a malicious actor has compromised an account, data exfiltration may still be attempted on encrypted, intellectual property, or other forms of unlabelled data to avoid detection. Darktrace analyses user behaviour to catch cases of unusual data exfiltration from individual accounts.

And classification efforts already in place aren’t wasted – Darktrace/Email extends Microsoft Purview policies and sensitivity labels to avoid duplicate workflows for the security team, combining the best of both approaches to ensure organizations maintain control and visibility over their data.

End User and Security Workflows

Achieve more than 60% improvement in the quality of end-user phishing reports and detection of sophisticated malicious weblinks1

Darktrace/Email improves end-user reporting from the ground up to save security team resource. Employees will always be on the front line of email security – while other solutions assume that end-user reporting is automatically of poor quality, Darktrace prioritizes improving users’ security awareness to increase the quality of end-user reporting from day one.  

Users are empowered to assess and report suspicious activity with contextual banners and Cyber AI Analyst generated narratives for potentially suspicious emails, resulting in 60% fewer benign emails reported.  

Out of the higher-quality emails that end up being reported, the next step is to reduce the amount of emails that reach the SOC. Darktrace/Email’s Mailbox Security Assistant automates their triage with secondary analysis combining additional behavioral signals – using x20 more metrics than previously – with advanced link analysis to detect 70% more sophisticated malicious phishing links.2 This directly alleviates the burden of manual triage for security analysts.

For the emails that are received by the SOC, Darktrace/Email uses automation to reduce time spent investigating per incident. With live inbox view, security teams gain access to a centralized platform that combines intuitive search capabilities, Cyber AI Analyst reports, and mobile application access. Analysts can take remediation actions from within Darktrace/Email, eliminating console hopping and accelerating incident response.

Darktrace takes a user-focused and business-centric approach to email security, in contrast to the attack-centric rules and signatures approach of secure email gateways

Microsoft Teams

Detect threats within your Teams environment such as account compromise, phishing, malware and data loss

Around 83% of Fortune 500 companies rely on Microsoft Office products and services, particularly Teams and SharePoint.3

Darktrace now leverages the same behavioral AI techniques for Microsoft customers across 365 and Teams, allowing organizations to detect threats and signals of account compromise within their Teams environment including social engineering, malware and data loss.  

The primary use case for Microsoft Teams protection is as a potential entry vector. While messaging has traditionally been internal only, as organizations open up it is becoming an entry vector which needs to be treated with the same level of caution as email. That’s why we’re bringing our proven AI approach to Microsoft Teams, that understands the user behind the message.  

Anomalous messaging behavior is also a highly relevant indicator of whether a user has been compromised. Unlike other solutions that analyze Microsoft Teams content which focus on payloads, Darktrace goes beyond basic link and sandbox analysis and looks at actual user behavior from both a content and context perspective. This linguistic understanding isn’t bound by the requirement to match a signature to a malicious payload, rather it looks at the context in which the message has been delivered. From this analysis, Darktrace can spot the early symptoms of account compromise such as early-stage social engineering before a payload is delivered.

Lateral Mail Analysis

Detect and respond to internal mailflow with multi-layered AI to prevent account takeover, lateral phishing and data leaks

The industry’s most robust account takeover protection now prevents lateral mail account compromise. Darktrace has always looked at internal mail to inform inbound and outbound decisions, but will now elevate suspicious lateral mail behaviour using the same AI techniques for inbound, outbound and Teams analysis.

Darktrace integrates signals from across the entire mailflow and communication patterns to determine symptoms of account compromise, now including lateral mailflow

Unlike other solutions which only analyze payloads, Darktrace analyzes a whole range of signals to catch lateral movement before a payload is delivered. Contributing yet another layer to the AI behavioral profile for each user, security teams can now use signals from lateral mail to spot the early symptoms of account takeover and take autonomous actions to prevent further compromise.

DMARC

Gain in-depth visibility and control of 3rd parties using your domain with an industry-first AI-assisted DMARC

Darktrace has created the easiest path to brand protection and compliance with the new Darktrace/DMARC. This new capability continuously stops spoofing and phishing from the enterprise domain, while automatically enhancing email security and reducing the attack surface.

Darktrace/DMARC helps to upskill businesses by providing step by step guidance and automated record suggestions provide a clear, efficient road to enforcement. It allows organizations to quickly achieve compliance with requirements from Google, Yahoo, and others, to ensure that their emails are reaching mailboxes.  

Meanwhile, Darktrace/DMARC helps to reduce the overall attack surface by providing visibility over shadow-IT and third-party vendors sending on behalf of an organization’s brand, while informing recipients when emails from their domains are sent from un-authenticated DMARC source.

Darktrace/DMARC integrates with the wider Darktrace product platform, sharing insights to help further secure your business across Email Attack Path and Attack Surface management.

Conclusion

To learn more about the new innovations to Darktrace/Email download the solution brief here.

All of the new updates to Darktrace/Email sit within the new Darktrace ActiveAI Security Platform, creating a feedback loop between email security and the rest of the digital estate for better protection. Click to read more about the Darktrace ActiveAI Security Platform or to hear about the latest innovations to Darktrace/OT, the most comprehensive prevention, detection, and response solution purpose built for critical infrastructures.  

Learn about the intersection of cyber and AI by downloading the State of AI Cyber Security 2024 report to discover global findings that may surprise you, insights from security leaders, and recommendations for addressing today’s top challenges that you may face, too.

References

[1] Internal Darktrace Research

[2] Internal Darktrace Research

[3] Essential Microsoft Office Statistics in 2024

Continue reading
About the author
Carlos Gray
Product Manager

Blog

No se ha encontrado ningún artículo.

Managing Risk Beyond CVE Scores With the Latest Innovations to Darktrace/OT

Default blog imageDefault blog image
09
Apr 2024

Identifying Cyber Risk in Industrial Organizations

Compromised OT devices in ICS and SCADA environments pose significant physical risks, even endangering lives. However, identifying CVEs in the multitude of complex OT devices is labor-intensive and time-consuming, draining valuable resources.

Even after identifying a vulnerability, implementing a patch presents its own challenges limited maintenance windows and the need for uninterrupted operations strain IT and OT teams often leading organizations to prioritize availability over security leading vulnerabilities remaining unresolved for over 5 years on average. (1)

Darktrace’s New Innovation

Darktrace is an industry leader in cybersecurity with 10+ years of experience securing OT environments where we take a fundamentally different approach using Self-Learning AI to enhance threat detection and response.

Continuing to combat the expanding threat landscape, Darktrace is excited to announce new capabilities that enable a contextualized and proactive approach to managing cyber risk at industrial organizations.

Today we launch an innovation to our OT Cybersecurity solution, Darktrace/OT, that will add a layer of proactivity, enabling a comprehensive approach to risk management. This industry leading innovation for Darktrace/OT moves beyond CVE scores to redefine vulnerability management for critical infrastructure, tackling the full breadth of risks not limited by traditional controls.  

Darktrace/OT is the only OT security solution with comprehensive Risk Management which includes:

  • Contextualized risk analysis unique to your organization
  • The most realistic evaluation and prioritization of OT risk
  • Effectively mitigate risk across your OT infrastructure, with and without patching.
  • The only OT security solution that evaluates your defenses against Advanced Persistent Threat (APT) Groups.

The most comprehensive prevention, detection, and response solution purpose built for Critical Infrastructures

Darktrace’s Self-Learning AI technology is a cutting-edge innovation that implements real time prevention, detection, response, and recovery for operational technologies and enables a fundamental shift from the traditional approach to cyber defense by learning a ‘pattern of life’ for every network, device, and user.  

Rather than relying on knowledge of past attacks, AI technology learns what is ‘normal’ for its environment, discovering previously unknown threats by detecting subtle shifts in behavior. Through identifying these unexpected anomalies, security teams can investigate novel attacks, discover blind spots, have live time visibility across all their physical and digital assets, and reduce time to detect, respond to, and triage security events.  

  • Achieve greater visibility of OT and IT devices across all levels of the Purdue Model.
  • The industry's only OT security to scale threat detection and response, with a 92% time saving from triage to recovery.  
  • The only OT focused security solution to provide bespoke Risk Management.

To learn more about how Darktrace/OT approaches unique use cases for industrial organizations visit the Darktrace/OT Webpage or join us LIVE at a city near you.

Read more below to discover how new innovations to Darktrace/OT are bringing a new, contextualized approach to Risk Management for Industrial organizations.

For more information on the entire Darktrace/OT Solution read our solution brief here.

Darktrace/OT and New Risk Management

Risk Identification

Leveraging the visibility of Darktrace/OT which identifies individual systems throughout the Purdue Model and the relationship between them, Darktrace/OT identifies high-risk CVEs and presents potential attack routes that go beyond techniques requiring a known exploit, such as misuse of legitimate services. Each attack path will have a mathematical evaluation of difficulty and impact from initial access to the high value objectives.  

Together this gives comprehensive coverage over your real and potential risks from both an attacker and known vulnerability perspectives. OT attack paths as seen here even leverage insights between the industrial and corporate communications to reveal ways threat actors may take advantage of IT-OT convergence. This revelation of imperceptible risks fills gaps in traditional risk analysis like remote access and insider threats.

Figure 1: Darktrace/OT visualizing the most critical attack paths at an organization
Figure 1: Darktrace/OT visualizing the most critical attack paths at an organization
Figure 2: A specific Attack Path identified by Darktrace/OT

Risk Prioritization

Darktrace/OT prioritizes remediations and mitigations based on difficulty and damage to your unique organization, using the established Attack Paths.

We ascertain the priorities that apply to your organization beyond pure theoretical damage answering questions like:

  • How difficult is a particular vulnerability to exploit considering the steps an attacker would require to reach it?
  • And, how significant would the impact be if it was exploited within this particular network?

This expanded approach to risk prioritization has a much more comprehensive evaluation of your organization's unique risk than has ever been possible before. Traditional approaches of ranking only known vulnerabilities with isolated scores using CVSS and exploitability metrics, often leaves gaps in IT-OT risks and is blind to legitimate service exploitation.

Figure 3: Darktrace/OT leverages its contextual understand of the organization’s network to prioritize remediation that will have the positive impact on the risk score

Darktrace provides mitigation strategies associated with each identified risk and the relevant impact it has on your overall risk posture, across all MITRE ATT&CK techniques.

What sets Darktrace apart is our ability to contextualize these mitigations within the broader business. When patching vulnerabilities directly isn’t possible, Darktrace identifies alternative actions that harden attack paths leading to critical assets. Hardening the surrounding attack path increases the difficulty and therefore reduces the likelihood and impact of a breach.

That means unpatched vulnerabilities and vulnerable devices aren’t left unprotected. This also has an added bonus, those hardening techniques work for all devices in that network segment, so apply one change, secure many.

Figure 4: Darktrace prioritizes mitigation reducing accessibility of vulnerability and the overall risk score when patches aren’t available

Communicate Board Level Risk with APT Threat Mapping

Darktrace/OT bridges theory and practice as the only security solution that maps MITRE techniques, frequently used by APT Groups, onto AI-assessed critical Attack Paths. This unique solution provides unparalleled insights including sector and location intelligence, possible operating platforms, common techniques, exploited CVEs, and the number of potential devices affected in your environment, supporting holistic risk assessment and proactive defense measures.

Ultimately, this becomes a power dashboard to communicate board level risk, using both metric based evidence and industry standard threat mapping.

Conclusion

Darktrace/OT is part of the Darktrace ActiveAI Security Platform a native, holistic, AI-driven platform built on over ten years of AI research. It helps security teams shift to more a productive mode, finding the known and the unknown attacks and transforming the SOC with the various Darktrace products to drive efficiency gains. It does this across the whole incident lifecycle to lower risk, reduce time spent on active incidents, and drive return on investment.

Discover more about Darktrace's ever-strengthening platform with the upcoming changes coming to our Darktrace/Email product and other launch day blogs.

Join Darktrace LIVE half-day event to understand the reality versus the hype surrounding AI and how to achieve cyber resilience.

Learn about the intersection of cyber and AI by downloading the State of AI Cyber Security 2024 report to discover global findings that may surprise you, insights from security leaders, and recommendations for addressing today’s top challenges that you may face, too.  

References

1. https://research-information.bris.ac.uk/ws/portalfiles/portal/313646831/Catch_Me_if_You_Can.pdf

Continue reading
About the author
Mitchell Bezzina
VP, Product and Solutions Marketing
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Inicie su prueba gratuita
Darktrace AI protecting a business from cyber threats.