Blog

Dentro del SOC

Ransomware

When speedy attacks aren’t enough: Prolonging Quantum Ransomware

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Oct 2022
26
Oct 2022
Whilst Quantum Ransomware has been characterized by speedy and efficient attacks, Darktrace recently detected a surprising incident where the group used a long dwell time to achieve their goals. This blog explores the effect of this group's change in strategy and DETECT/Network’s coverage over the event.

Within science and engineering, the word ‘quantum’ may spark associations with speed and capability, referencing a superior computer that can perform tasks a classical computer cannot. In cyber security, some may recognize ‘quantum’ in relation to cryptography or, more recently, as the name of a new ransomware group, which achieved network-wide encryption a mere four hours after an initial infection.   

Although this group now has a reputation for carrying out fast and efficient attacks, speed is not their only tactic. In August 2022, Darktrace detected a Quantum Ransomware incident where attackers remained in the victim’s network for almost a month after the initial signs of infection, before detonating ransomware. This was a stark difference to previously reported attacks, demonstrating that as motives change, so do threat actors’ strategies. 

The Quantum Group

Quantum was first identified in August 2021 as the latest of several rebrands of MountLocker ransomware [1]. As part of this rebrand, the extension ‘.quantum’ is appended to filenames that are encrypted and the associated ransom notes are named ‘README_TO_DECRYPT.html’ [2].  

From April 2022, media coverage of this group has increased following a DFIR report detailing an attack that progressed from initial access to domain-wide ransomware within four hours [3]. To put this into perspective, the global median dwell time for ransomware in 2020 and 2021 is 5 days [4]. In the case of Quantum, threat actors gained direct keyboard access to devices merely 2 hours after initial infection. The ransomware was staged on the domain controller around an hour and a half later, and executed 12 minutes after that.   

Quantum’s behaviour bears similarities to other groups, possibly due to their history and recruitment. Several members of the disbanded Conti ransomware group are reported to have joined the Quantum and BumbleBee operations. Security researchers have also identified similarities in the payloads and C2 infrastructure used by these groups [5 & 6].  Notably, these are the IcedID initial payload and Cobalt Strike C2 beacon used in this attack. Darktrace has also observed and prevented IcedID and Cobalt Strike activity from BumbleBee across several customer environments.

The Attack

From 11th July 2022, a device suspected to be patient zero made repeated DNS queries for external hosts that appear to be associated with IcedID C2 traffic [7 & 8]. In several reported cases [9 & 10], this banking trojan is delivered through a phishing email containing a malicious attachment that loads an IcedID DLL. As Darktrace was not deployed in the prospect’s email environment, there was no visibility of the initial access vector, however an example of a phishing campaign containing this payload is presented below. It is also possible that the device was already infected prior to joining the network. 

Figure 1- An example phishing email used to distribute IcedID. If configured, Darktrace/Email would be able to detect that the email was sent from an anomalous sender, was part of a fake reply chain, and had a suspicious attachment containing compressed content of unusual mime type [11].    

 

Figure 2- The DNS queries to endpoints associated with IcedID C2 servers, taken from the infected device’s event log.  Additional DNS queries made to other IcedID C2 servers are in the list of IOCs in the appendices.  The repeated DNS queries are indicative of beaconing.


It was not until 22nd July that activity was seen which indicated the attack had progressed to the next stage of the kill chain. This contrasts the previously seen attacks where the progression to Cobalt Strike C2 beaconing and reconnaissance and lateral movement occurred within 2 hours of the initial infection [12 & 13]. In this case, patient zero initiated numerous unusual connections to other internal devices using a compromised account, connections that were indicative of reconnaissance using built-in Windows utilities:

·      DNS queries for hostnames in the network

·      SMB writes to IPC$ shares of those hostnames queried, binding to the srvsvc named pipe to enumerate things such as SMB shares and services on a device, client access permissions on network shares and users logged in to a remote session

·      DCE-RPC connections to the endpoint mapper service, which enables identification of the ports assigned to a particular RPC service

These connections were initiated using an existing credential on the device and just like the dwelling time, differed from previously reported Quantum group attacks where discovery actions were spawned and performed automatically by the IcedID process [14]. Figure 3 depicts how Darktrace detected that this activity deviated from the device’s normal behaviour.  

Figure 3- This figure displays the spike in active internal connections initiated by patient zero. The coloured dots represent the Darktrace models that were breached, detecting this unusual reconnaissance and lateral movement activity.

Four days later, on the 26th of July, patient zero performed SMB writes of DLL and MSI executables to the C$ shares of internal devices including domain controllers, using a privileged credential not previously seen on the patient zero device. The deviation from normal behaviour that this represents is also displayed in Figure 3. Throughout this activity, patient zero made DNS queries for the external Cobalt Strike C2 server shown in Figure 4. Cobalt Strike has often been seen as a secondary payload delivered via IcedID, due to IcedID’s ability to evade detection and deploy large scale campaigns [15]. It is likely that reconnaissance and lateral movement was performed under instructions received by the Cobalt Strike C2 server.   

Figure 4- This figure is taken from Darktrace’s Advanced Search interface, showing a DNS query for a Cobalt Strike C2 server occurring during SMB writes of .dll files and DCE-RPC requests to the epmapper service, demonstrating reconnaissance and lateral movement.


The SMB writes to domain controllers and usage of a new account suggests that by this stage, the attacker had achieved domain dominance. The attacker also appeared to have had hands-on access to the network via a console; the repetition of the paths ‘programdata\v1.dll’ and ‘ProgramData\v1.dll’, in lower and title case respectively, suggests they were entered manually.  

These DLL files likely contained a copy of the malware that injects into legitimate processes such as winlogon, to perform commands that call out to C2 servers [16]. Shortly after the file transfers, the affected domain controllers were also seen beaconing to external endpoints (‘sezijiru[.]com’ and ‘gedabuyisi[.]com’) that OSINT tools have associated with these DLL files [17 & 18]. Moreover, these SSL connections were made using a default client fingerprint for Cobalt Strike [19], which is consistent with the initial delivery method. To illustrate the beaconing nature of these connections, Figure 5 displays the 4.3 million daily SSL connections to one of the C2 servers during the attack. The 100,000 most recent connections were initiated by 11 unique source IP addresses alone.

Figure 5- The Advanced Search interface, querying for external SSL connections from devices in the network to an external host that appears to be a Cobalt Strike C2 server. 4.3 million connections were made over 8 days, even after the ransomware was eventually detonated on 2022-08-03.


Shortly after the writes, the attack progressed to the penultimate stage. The next day, on the 27th of July, the attackers moved to achieve their first objective: data exfiltration. Data exfiltration is not always performed by the Quantum ransomware gang. Researchers have noted discrepancies between claims of data theft made in their ransom notes versus the lack of data seen leaving the network, although this may have been missed due to covert exfiltration via a Cobalt Strike beacon [20]. 

In contrast, this attack displayed several gigabytes of data leaving internal devices including servers that had previously beaconed to Cobalt Strike C2 servers. This data was transferred overtly via FTP, however the attacker still attempted to conceal the activity using ephemeral ports (FTP in EPSV mode). FTP is an effective method for attackers to exfiltrate large files as it is easy to use, organizations often neglect to monitor outbound usage, and it can be shipped through ports that will not be blocked by traditional firewalls [21].   

Figure 6 displays an example of the FTP data transfer to attacker-controlled infrastructure, in which the destination share appears structured to identify the organization that the data was stolen from, suggesting there may be other victim organizations’ data stored. This suggests that data exfiltration was an intended outcome of this attack. 

Figure 6- This figure is from Darktrace’s Advanced Search interface, displaying some of the data transferred from an internal device to the attacker’s FTP server.

 
Data was continuously exfiltrated until a week later when the final stage of the attack was achieved and Quantum ransomware was detonated. Darktrace detected the following unusual SMB activity initiated from the attacker-created account that is a hallmark for ransomware (see Figure 7 for example log):

·      Symmetric SMB Read to Write ratio, indicative of active encryption

·      Sustained MIME type conversion of files, with the extension ‘.quantum’ appended to filenames

·      SMB writes of a ransom note ‘README_TO_DECRYPT.html’ (see Figure 8 for an example note)

Figure 7- The Model Breach Event Log for a device that had files encrypted by Quantum ransomware, showing the reads and writes of files with ‘.quantum’ appended to encrypted files, and an HTML ransom note left where the files were encrypted.

 

Figure 8- An example of the ransom note left by the Quantum gang, this one is taken from open-sources [22].


The example in Figure 8 mentions that the attacker also possessed large volumes of victim data.  It is likely that the gigabytes of data exfiltrated over FTP were leveraged as blackmail to further extort the victim organization for payment.  

Darktrace Coverage

 

Figure 9- Timeline of Quantum ransomware incident


If Darktrace/Email was deployed in the prospect’s environment, the initial payload (if delivered through a phishing email) could have been detected and held from the recipient’s inbox. Although DETECT identified anomalous network behaviour at each stage of the attack, since the incident occurred during a trial phase where Darktrace could only detect but not respond, the attack was able to progress through the kill chain. If RESPOND/Network had been configured in the targeted environment, the unusual connections observed during the initial access, C2, reconnaissance and lateral movement stages of the attack could have been blocked. This would have prevented the attackers from delivering the later stage payloads and eventual ransomware into the target network.

It is often thought that a properly implemented backup strategy is sufficient defense against ransomware [23], however as discussed in a previous Darktrace blog, the increasing frequency of double extortion attacks in a world where ‘data is the new oil’ demonstrates that backups alone are not a mitigation for the risk of a ransomware attack [24]. Equally, the lack of preventive defenses in the target’s environment enabled the attacker’s riskier decision to dwell in the network for longer and allowed them to optimize their potential reward. 

Recent crackdowns from law enforcement on ransomware groups have shifted these groups’ approaches to aim for a balance between low risk and significant financial rewards [25]. However, given the Quantum gang only have a 5% market share in Q2 2022, compared to the 13.2% held by LockBit and 16.9% held by BlackCat [26], a riskier strategy may be favourable, as a longer dwell time and double extortion outcome offers a ‘belt and braces’ approach to maximizing the rewards from carrying out this attack. Alternatively, the gaps in-between the attack stages may imply that more than one player was involved in this attack, although this group has not been reported to operate a franchise model before [27]. Whether assisted by others or driving for a risk approach, it is clear that Quantum (like other actors) are continuing to adapt to ensure their financial success. They will continue to be successful until organizations dedicate themselves to ensuring that the proper data protection and network security measures are in place. 

Conclusion 

Ransomware has evolved over time and groups have merged and rebranded. However, this incident of Quantum ransomware demonstrates that regardless of the capability to execute a full attack within hours, prolonging an attack to optimize potential reward by leveraging double extortion tactics is sometimes still the preferred action. The pattern of network activity mirrors the techniques used in other Quantum attacks, however this incident lacked the continuous progression of the group’s attacks reported recently and may represent a change of motives during the process. Knowing that attacker motives can change reinforces the need for organizations to invest in preventative controls- an organization may already be too far down the line if it is executing its backup contingency plans. Darktrace DETECT/Network had visibility over both the early network-based indicators of compromise and the escalation to the later stages of this attack. Had Darktrace also been allowed to respond, this case of Quantum ransomware would also have had a very short dwell time, but a far better outcome for the victim.

Thanks to Steve Robinson for his contributions to this blog.

Appendices

References

[1] https://community.ibm.com/community/user/security/blogs/tristan-reed/2022/07/13/ibm-security-reaqta-vs-quantum-locker-ransomware

 

[2] https://www.bleepingcomputer.com/news/security/quantum-ransomware-seen-deployed-in-rapid-network-attacks/

 

[3], [12], [14], [16], [20] https://thedfirreport.com/2022/04/25/quantum-ransomware/

 

[4] https://www.mandiant.com/sites/default/files/2022-04/M-Trends%202022%20Executive%20Summary.pdf

 

[5] https://cyware.com/news/over-650-healthcare-organizations-affected-by-the-quantum-ransomware-attack-d0e776bb/

 

[6] https://www.kroll.com/en/insights/publications/cyber/bumblebee-loader-linked-conti-used-in-quantum-locker-attacks

 

[7] https://github.com/pan-unit42/tweets/blob/master/2022-06-28-IOCs-for-TA578-IcedID-Cobalt-Strike-and-DarkVNC.txt 

 

[8] https://github.com/stamparm/maltrail/blob/master/trails/static/malware/icedid.txt

 

[9], [15] https://www.cynet.com/blog/shelob-moonlight-spinning-a-larger-web-from-icedid-to-conti-a-trojan-and-ransomware-collaboration/

 

[10] https://www.microsoft.com/security/blog/2021/04/09/investigating-a-unique-form-of-email-delivery-for-icedid-malware/

 

[11] https://twitter.com/0xToxin/status/1564289244084011014

 

[13], [27] https://cybernews.com/security/quantum-ransomware-gang-fast-and-furious/

 

[17] https://www.virustotal.com/gui/domain/gedabuyisi.com/relations

 

[18] https://www.virustotal.com/gui/domain/sezijiru.com/relations.

 

[19] https://github.com/ByteSecLabs/ja3-ja3s-combo/blob/master/master-list.txt 

 

[21] https://www.darkreading.com/perimeter/ftp-hacking-on-the-rise

 

[22] https://www.pcrisk.com/removal-guides/23352-quantum-ransomware

 

[23] https://www.cohesity.com/resource-assets/tip-sheet/5-ways-ransomware-renders-backup-useless-tip-sheet-en.pdf

 

[24] https://www.forbes.com/sites/nishatalagala/2022/03/02/data-as-the-new-oil-is-not-enough-four-principles-for-avoiding-data-fires/ 

 

[25] https://www.bleepingcomputer.com/news/security/access-to-hacked-corporate-networks-still-strong-but-sales-fall/

 

[26] https://www.bleepingcomputer.com/news/security/ransom-payments-fall-as-fewer-victims-choose-to-pay-hackers/ 

DENTRO DEL SOC
Darktrace son expertos de talla mundial en inteligencia de amenazas, caza de amenazas y respuesta a incidentes, y proporcionan apoyo al SOC las 24 horas del día a miles de clientes de Darktrace en todo el mundo. Inside the SOC está redactado exclusivamente por estos expertos y ofrece un análisis de los ciberincidentes y las tendencias de las amenazas, basado en la experiencia real sobre el terreno.
AUTOR
SOBRE EL AUTOR
Nicole Wong
Cyber Security Analyst
Book a 1-1 meeting with one of our experts
share this article
PRODUCTOS DESTACADOS
No se ha encontrado ningún artículo.
Cobertura básica
No se ha encontrado ningún artículo.

More in this series

No se ha encontrado ningún artículo.

Blog

Email

Looking Beyond Secure Email Gateways with the Latest Innovations to Darktrace/Email

Default blog imageDefault blog image
09
Apr 2024

Organizations Should Demand More from their Email Security

In response to a more intricate threat landscape, organizations should view email security as a critical component of their defense-in-depth strategy, rather than defending the inbox alone with a traditional Secure Email Gateway (SEG). Organizations need more than a traditional gateway – that doubles, instead of replaces, the capabilities provided by native security vendor – and require an equally granular degree of analysis across all messaging, including inbound, outbound, and lateral mail, plus Teams messages.  

Darktrace/Email is the industry’s most advanced cloud email security, powered by Self-Learning AI. It combines AI techniques to exceed the accuracy and efficiency of leading security solutions, and is the only security built to elevate, not duplicate, native email security.  

With its largest update ever, Darktrace/Email introduces the following innovations, finally allowing security teams to look beyond secure email gateways with autonomous AI:

  • AI-augmented data loss prevention to stop the entire spectrum of outbound mail threats
  • an easy way to deploy DMARC quickly with AI
  • major enhancements to streamline SOC workflows and increase the detection of sophisticated phishing links
  • expansion of Darktrace’s leading AI prevention to lateral mail, account compromise and Microsoft Teams

What’s New with Darktrace/Email  

Data Loss Prevention  

Block the entire spectrum of outbound mail threats with advanced data loss prevention that builds on tags in native email to stop unknown, accidental, and malicious data loss

Darktrace understands normal at individual user, group and organization level with a proven AI that detects abnormal user behavior and dynamic content changes. Using this understanding, Darktrace/Email actions outbound emails to stop unknown, accidental and malicious data loss.  

Traditional DLP solutions only take into account classified data, which relies on the manual input of labelling each data piece, or creating rules to catch pattern matches that try to stop data of certain types leaving the organization. But in today’s world of constantly changing data, regular expression and fingerprinting detection are no longer enough.

  • Human error – Because it understands normal for every user, Darktrace/Email can recognize cases of misdirected emails. Even if the data is correctly labelled or insensitive, Darktrace recognizes when the context in which it is being sent could be a case of data loss and warns the user.  
  • Unclassified data – Whereas traditional DLP solutions can only take action on classified data, Darktrace analyzes the range of data that is either pending labels or can’t be labeled with typical capabilities due to its understanding of the content and context of every email.  
  • Insider threat – If a malicious actor has compromised an account, data exfiltration may still be attempted on encrypted, intellectual property, or other forms of unlabelled data to avoid detection. Darktrace analyses user behaviour to catch cases of unusual data exfiltration from individual accounts.

And classification efforts already in place aren’t wasted – Darktrace/Email extends Microsoft Purview policies and sensitivity labels to avoid duplicate workflows for the security team, combining the best of both approaches to ensure organizations maintain control and visibility over their data.

End User and Security Workflows

Achieve more than 60% improvement in the quality of end-user phishing reports and detection of sophisticated malicious weblinks1

Darktrace/Email improves end-user reporting from the ground up to save security team resource. Employees will always be on the front line of email security – while other solutions assume that end-user reporting is automatically of poor quality, Darktrace prioritizes improving users’ security awareness to increase the quality of end-user reporting from day one.  

Users are empowered to assess and report suspicious activity with contextual banners and Cyber AI Analyst generated narratives for potentially suspicious emails, resulting in 60% fewer benign emails reported.  

Out of the higher-quality emails that end up being reported, the next step is to reduce the amount of emails that reach the SOC. Darktrace/Email’s Mailbox Security Assistant automates their triage with secondary analysis combining additional behavioral signals – using x20 more metrics than previously – with advanced link analysis to detect 70% more sophisticated malicious phishing links.2 This directly alleviates the burden of manual triage for security analysts.

For the emails that are received by the SOC, Darktrace/Email uses automation to reduce time spent investigating per incident. With live inbox view, security teams gain access to a centralized platform that combines intuitive search capabilities, Cyber AI Analyst reports, and mobile application access. Analysts can take remediation actions from within Darktrace/Email, eliminating console hopping and accelerating incident response.

Darktrace takes a user-focused and business-centric approach to email security, in contrast to the attack-centric rules and signatures approach of secure email gateways

Microsoft Teams

Detect threats within your Teams environment such as account compromise, phishing, malware and data loss

Around 83% of Fortune 500 companies rely on Microsoft Office products and services, particularly Teams and SharePoint.3

Darktrace now leverages the same behavioral AI techniques for Microsoft customers across 365 and Teams, allowing organizations to detect threats and signals of account compromise within their Teams environment including social engineering, malware and data loss.  

The primary use case for Microsoft Teams protection is as a potential entry vector. While messaging has traditionally been internal only, as organizations open up it is becoming an entry vector which needs to be treated with the same level of caution as email. That’s why we’re bringing our proven AI approach to Microsoft Teams, that understands the user behind the message.  

Anomalous messaging behavior is also a highly relevant indicator of whether a user has been compromised. Unlike other solutions that analyze Microsoft Teams content which focus on payloads, Darktrace goes beyond basic link and sandbox analysis and looks at actual user behavior from both a content and context perspective. This linguistic understanding isn’t bound by the requirement to match a signature to a malicious payload, rather it looks at the context in which the message has been delivered. From this analysis, Darktrace can spot the early symptoms of account compromise such as early-stage social engineering before a payload is delivered.

Lateral Mail Analysis

Detect and respond to internal mailflow with multi-layered AI to prevent account takeover, lateral phishing and data leaks

The industry’s most robust account takeover protection now prevents lateral mail account compromise. Darktrace has always looked at internal mail to inform inbound and outbound decisions, but will now elevate suspicious lateral mail behaviour using the same AI techniques for inbound, outbound and Teams analysis.

Darktrace integrates signals from across the entire mailflow and communication patterns to determine symptoms of account compromise, now including lateral mailflow

Unlike other solutions which only analyze payloads, Darktrace analyzes a whole range of signals to catch lateral movement before a payload is delivered. Contributing yet another layer to the AI behavioral profile for each user, security teams can now use signals from lateral mail to spot the early symptoms of account takeover and take autonomous actions to prevent further compromise.

DMARC

Gain in-depth visibility and control of 3rd parties using your domain with an industry-first AI-assisted DMARC

Darktrace has created the easiest path to brand protection and compliance with the new Darktrace/DMARC. This new capability continuously stops spoofing and phishing from the enterprise domain, while automatically enhancing email security and reducing the attack surface.

Darktrace/DMARC helps to upskill businesses by providing step by step guidance and automated record suggestions provide a clear, efficient road to enforcement. It allows organizations to quickly achieve compliance with requirements from Google, Yahoo, and others, to ensure that their emails are reaching mailboxes.  

Meanwhile, Darktrace/DMARC helps to reduce the overall attack surface by providing visibility over shadow-IT and third-party vendors sending on behalf of an organization’s brand, while informing recipients when emails from their domains are sent from un-authenticated DMARC source.

Darktrace/DMARC integrates with the wider Darktrace product platform, sharing insights to help further secure your business across Email Attack Path and Attack Surface management.

Conclusion

To learn more about the new innovations to Darktrace/Email download the solution brief here.

All of the new updates to Darktrace/Email sit within the new Darktrace ActiveAI Security Platform, creating a feedback loop between email security and the rest of the digital estate for better protection. Click to read more about the Darktrace ActiveAI Security Platform or to hear about the latest innovations to Darktrace/OT, the most comprehensive prevention, detection, and response solution purpose built for critical infrastructures.  

Learn about the intersection of cyber and AI by downloading the State of AI Cyber Security 2024 report to discover global findings that may surprise you, insights from security leaders, and recommendations for addressing today’s top challenges that you may face, too.

References

[1] Internal Darktrace Research

[2] Internal Darktrace Research

[3] Essential Microsoft Office Statistics in 2024

Continue reading
About the author
Carlos Gray
Product Manager

Blog

No se ha encontrado ningún artículo.

Managing Risk Beyond CVE Scores With the Latest Innovations to Darktrace/OT

Default blog imageDefault blog image
09
Apr 2024

Identifying Cyber Risk in Industrial Organizations

Compromised OT devices in ICS and SCADA environments pose significant physical risks, even endangering lives. However, identifying CVEs in the multitude of complex OT devices is labor-intensive and time-consuming, draining valuable resources.

Even after identifying a vulnerability, implementing a patch presents its own challenges limited maintenance windows and the need for uninterrupted operations strain IT and OT teams often leading organizations to prioritize availability over security leading vulnerabilities remaining unresolved for over 5 years on average. (1)

Darktrace’s New Innovation

Darktrace is an industry leader in cybersecurity with 10+ years of experience securing OT environments where we take a fundamentally different approach using Self-Learning AI to enhance threat detection and response.

Continuing to combat the expanding threat landscape, Darktrace is excited to announce new capabilities that enable a contextualized and proactive approach to managing cyber risk at industrial organizations.

Today we launch an innovation to our OT Cybersecurity solution, Darktrace/OT, that will add a layer of proactivity, enabling a comprehensive approach to risk management. This industry leading innovation for Darktrace/OT moves beyond CVE scores to redefine vulnerability management for critical infrastructure, tackling the full breadth of risks not limited by traditional controls.  

Darktrace/OT is the only OT security solution with comprehensive Risk Management which includes:

  • Contextualized risk analysis unique to your organization
  • The most realistic evaluation and prioritization of OT risk
  • Effectively mitigate risk across your OT infrastructure, with and without patching.
  • The only OT security solution that evaluates your defenses against Advanced Persistent Threat (APT) Groups.

The most comprehensive prevention, detection, and response solution purpose built for Critical Infrastructures

Darktrace’s Self-Learning AI technology is a cutting-edge innovation that implements real time prevention, detection, response, and recovery for operational technologies and enables a fundamental shift from the traditional approach to cyber defense by learning a ‘pattern of life’ for every network, device, and user.  

Rather than relying on knowledge of past attacks, AI technology learns what is ‘normal’ for its environment, discovering previously unknown threats by detecting subtle shifts in behavior. Through identifying these unexpected anomalies, security teams can investigate novel attacks, discover blind spots, have live time visibility across all their physical and digital assets, and reduce time to detect, respond to, and triage security events.  

  • Achieve greater visibility of OT and IT devices across all levels of the Purdue Model.
  • The industry's only OT security to scale threat detection and response, with a 92% time saving from triage to recovery.  
  • The only OT focused security solution to provide bespoke Risk Management.

To learn more about how Darktrace/OT approaches unique use cases for industrial organizations visit the Darktrace/OT Webpage or join us LIVE at a city near you.

Read more below to discover how new innovations to Darktrace/OT are bringing a new, contextualized approach to Risk Management for Industrial organizations.

For more information on the entire Darktrace/OT Solution read our solution brief here.

Darktrace/OT and New Risk Management

Risk Identification

Leveraging the visibility of Darktrace/OT which identifies individual systems throughout the Purdue Model and the relationship between them, Darktrace/OT identifies high-risk CVEs and presents potential attack routes that go beyond techniques requiring a known exploit, such as misuse of legitimate services. Each attack path will have a mathematical evaluation of difficulty and impact from initial access to the high value objectives.  

Together this gives comprehensive coverage over your real and potential risks from both an attacker and known vulnerability perspectives. OT attack paths as seen here even leverage insights between the industrial and corporate communications to reveal ways threat actors may take advantage of IT-OT convergence. This revelation of imperceptible risks fills gaps in traditional risk analysis like remote access and insider threats.

Figure 1: Darktrace/OT visualizing the most critical attack paths at an organization
Figure 1: Darktrace/OT visualizing the most critical attack paths at an organization
Figure 2: A specific Attack Path identified by Darktrace/OT

Risk Prioritization

Darktrace/OT prioritizes remediations and mitigations based on difficulty and damage to your unique organization, using the established Attack Paths.

We ascertain the priorities that apply to your organization beyond pure theoretical damage answering questions like:

  • How difficult is a particular vulnerability to exploit considering the steps an attacker would require to reach it?
  • And, how significant would the impact be if it was exploited within this particular network?

This expanded approach to risk prioritization has a much more comprehensive evaluation of your organization's unique risk than has ever been possible before. Traditional approaches of ranking only known vulnerabilities with isolated scores using CVSS and exploitability metrics, often leaves gaps in IT-OT risks and is blind to legitimate service exploitation.

Figure 3: Darktrace/OT leverages its contextual understand of the organization’s network to prioritize remediation that will have the positive impact on the risk score

Darktrace provides mitigation strategies associated with each identified risk and the relevant impact it has on your overall risk posture, across all MITRE ATT&CK techniques.

What sets Darktrace apart is our ability to contextualize these mitigations within the broader business. When patching vulnerabilities directly isn’t possible, Darktrace identifies alternative actions that harden attack paths leading to critical assets. Hardening the surrounding attack path increases the difficulty and therefore reduces the likelihood and impact of a breach.

That means unpatched vulnerabilities and vulnerable devices aren’t left unprotected. This also has an added bonus, those hardening techniques work for all devices in that network segment, so apply one change, secure many.

Figure 4: Darktrace prioritizes mitigation reducing accessibility of vulnerability and the overall risk score when patches aren’t available

Communicate Board Level Risk with APT Threat Mapping

Darktrace/OT bridges theory and practice as the only security solution that maps MITRE techniques, frequently used by APT Groups, onto AI-assessed critical Attack Paths. This unique solution provides unparalleled insights including sector and location intelligence, possible operating platforms, common techniques, exploited CVEs, and the number of potential devices affected in your environment, supporting holistic risk assessment and proactive defense measures.

Ultimately, this becomes a power dashboard to communicate board level risk, using both metric based evidence and industry standard threat mapping.

Conclusion

Darktrace/OT is part of the Darktrace ActiveAI Security Platform a native, holistic, AI-driven platform built on over ten years of AI research. It helps security teams shift to more a productive mode, finding the known and the unknown attacks and transforming the SOC with the various Darktrace products to drive efficiency gains. It does this across the whole incident lifecycle to lower risk, reduce time spent on active incidents, and drive return on investment.

Discover more about Darktrace's ever-strengthening platform with the upcoming changes coming to our Darktrace/Email product and other launch day blogs.

Join Darktrace LIVE half-day event to understand the reality versus the hype surrounding AI and how to achieve cyber resilience.

Learn about the intersection of cyber and AI by downloading the State of AI Cyber Security 2024 report to discover global findings that may surprise you, insights from security leaders, and recommendations for addressing today’s top challenges that you may face, too.  

References

1. https://research-information.bris.ac.uk/ws/portalfiles/portal/313646831/Catch_Me_if_You_Can.pdf

Continue reading
About the author
Mitchell Bezzina
VP, Product and Solutions Marketing
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Inicie su prueba gratuita
Darktrace AI protecting a business from cyber threats.