Blog
Hallazgos de amenazas
RESPOND
La IA neutraliza un ataque de IoT que amenazaba con interrumpir los Juegos Olímpicos de Tokio



One of the greatest issues in security is how to deal with high-stress scenarios when there is a significant breach, and there is too much to do in too little time. The nightmare scenario for any CISO is when this happens during a critical moment for the organization: an important acquisition, a crucial news announcement, or in this case, a global sporting event attracting an audience of millions.
Threat actors often exploit the pressure of these events to cause disruption or extract hefty sums. Sporting occasions, especially Formula 1 races, the Super Bowl, and the Olympics, attract a great deal of criminal interest.
The games begin
There have been several recorded attacks and data breaches at the Olympics this year, including an incident when a volleyball commentator asked his colleague for his computer password – not realizing he was still on air.
In a more nefarious case discovered by Darktrace, a Raspberry Pi device was covertly implanted into a national sporting body directly involved in the Olympics, in an attempt to exfiltrate sensitive data. The events took place one week before the start of the Games, and a data breach at this time would have had significant ramifications for the reputation of the organization, the confidentiality of their plans, and potentially the safety of their athletes.
Darktrace AI recognized this activity as malicious given its evolving understanding of ‘self’ for the organization, and Antigena – Darktrace’s autonomous response capability – took action at machine speed to interrupt the threat, affording the human security team the critical time they needed to catch up and neutralize the attack.
In what follows, we break down the attack.

Figure 1: The overall dwell time was three days.
Breaking down the attack
July 15, 14:09 — Initial intrusion
An unauthorized Raspberry Pi device connected to the organization’s digital environment – disguised and named in a way which mimicked the corporate naming convention. As a small IoT device, Raspberry Pis can be easily hidden and are difficult to locate physically in large environments. They have been used in various high-profile hacks in the past including the 2018 NASA breach.
IoT devices – from printers to fish tanks – pose a serious risk to security, as they can be exploited to gather information, move laterally, and escalate privileges.
July 15, 15:25 — External VPN activity
Anomalous UDP connections were made to an external endpoint over port 1194 (Open VPN activity). URIs showed that the device downloaded data potentially associated with Open VPN configuration files. This could represent an attempt to establish a secure channel for malicious activity such as data exfiltration.
By establishing an outgoing VPN, the attacker obfuscated their activity and bypassed the organization’s signature-based security, which could not detect the encrypted traffic. Antigena immediately blocked the suspicious connectivity, regardless of the encryption, identifying that the activity was a deviation from the ‘pattern of life’ for new devices.
July 15, 16:04 — Possible C2 activity
The Raspberry Pi soon began making repeated HTTP connections to a new external endpoint and downloaded octet streams — arbitrary binary data. It seems the activity was initiated by a standalone software process as opposed to a web browser.
Darktrace revealed that the device was performing an unusual external data transfer to the same endpoint, uploading 7.5 MB which likely contained call home data about the new location and name of the device.
July 15, 16:41 — Internal reconnaissance
The device engaged in TCP scanning across three unique internal IP addresses over a wide range of ports. Although the network scan only targeted three internal servers, the activity was identified by Darktrace as a suspicious increase in internal connections and failed internal connections.
Antigena instantly stopped the Raspberry Pi from making internal connections over the ports involved in the scanning activity, as well as enforcing the device’s ‘pattern of life’.

Figure 2: Device event log showing the components which enable Darktrace to detect network scanning.
July 15, 18:14 — Multiple internal reconnaissance tactics
The Raspberry Pi then scanned a large number of devices on SMB port 445 and engaged in suspicious use of the outdated SMB version 1 protocol, suggesting more in-depth reconnaissance to find exploitable vulnerabilities.
Reacting to the scanning activity alongside the insecure protocol SMBv1, Antigena blocked connections from the source device to the destination IPs for one hour.
Four minutes later, the device engaged in connections to the open-source vulnerability scanner, Nmap. Nmap can be used legitimately for vulnerability scanning and so often is not alerted to by traditional security tools. However, Darktrace’s AI detected that the use of the tool was highly anomalous, and so blocked all outgoing traffic for ten minutes.
July 15, 22:03 — Final reconnaissance
Three hours later, the Raspberry Pi initiated another network scan across six unique external IPs – this was in preparation for the final data exfiltration. Antigena responded with instant, specific blocks to the external IPs which the device was attempting to connect to – before any data could be exfiltrated.
After 30 minutes, Darktrace detected bruteforcing activity from the Raspberry Pi using the SMB and NTLM authentication protocols. The device made a large number of failed login attempts to a single internal device using over 100 unique user accounts. Antigena blocked the activity, successfully stopping another wave of attempted SMB lateral movement.
By this stage, Antigena had bought the security team enough time to respond. The team applied an Antigena quarantine rule (the most severe action Antigena can take) to the Raspberry Pi, until they were able to find the physical location of the device and unplug it from the network.
How AI Analyst stitched together the incident
Cyber AI Analyst autonomously reported on three key moments of the attack:
- Transferencia de datos externa inusual
- Possible HTTP Command and Control
- TCP Scanning of Multiple Devices (the attempted data exfiltration)
It tied together activities over the span of multiple days, which could have been easily missed by human analysis. The AI provided crucial pieces of information, including the extent of the scanning activity. Such insights are time-consuming to calculate manually.

Figure 3: A screenshot from Cyber AI Analyst summarizing potential C2 activity.
Respuesta autónoma
Antigena took targeted action throughout to neutralize the suspicious behavior, while allowing normal business operations to continue unhindered.
Rather than widespread blocking, Antigena implemented a range of nuanced responses depending on the situation, always taking the smallest action necessary to deal with the threat.

Figure 4: Darktrace’s UI reveals the attempted network reconnaissance, and Antigena actions a targeted response. All IP addresses have been randomized.
Raspberry Pi: IoT threats
In an event involving 206 countries and 11,000 athletes, facing attacks from hacktivists, criminal groups, and nation states, with many broadcasters working remotely and millions watching from home, organizations involved in the Olympics needed a security solution which could rise to the occasion.
Even with the largest affairs, threats can come from the smallest places. The ability to detect unauthorized IoT devices and maintain visibility over all activity in your digital estate is essential.
Autonomous Response protects against the unexpected, stopping malicious activity at machine speed without any user input. This is necessary for rapid response and remediation, especially for resource-stretched internal security teams. When it comes to defending systems and outpacing attackers, AI always wins the race.
Thanks to Darktrace analysts Emma Foulger and Greg Chapman for their insights on the above threat find.
Learn how two rogue Raspberry Pi devices infected a healthcare provider
Darktrace model detections:
- Compromise / Ransomware / Suspicious SMB Activity
- Tags / New Raspberry Pi Device
- Device / Network Scan
- Unusual Activity / Unusual Raspberry Pi Activity
- Antigena / Network / Insider Threat / Antigena Network Scan Block
- Device / Suspicious Network Scan Activity
- Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
- Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach
- Device / Suspicious SMB Scanning Activity
- Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
- Device / Attack and Recon Tools
- Device / New Device with Attack Tools
- Device / Anomalous Nmap Activity
- Device / External Network Scan
- Device / SMB Session Bruteforce
- Antigena / Network / Manual / Block All Outgoing Connections
¿Te gusta esto y quieres más?
Blog
Dentro del SOC
How Abuse of ‘PerfectData Software’ May Create a Perfect Storm: An Emerging Trend in Account Takeovers



Amidst the ever-changing threat landscape, new tactics, techniques, and procedures (TTPs) seem to emerge daily, creating extreme challenges for security teams. The broad range of attack methods utilized by attackers seems to present an insurmountable problem: how do you defend against a playbook that does not yet exist?
Faced with the growing number of novel and uncommon attack methods, it is essential for organizations to adopt a security solution able to detect threats based on their anomalies, rather than relying on threat intelligence alone.
In March 2023, Darktrace observed an emerging trend in the use of an application known as ‘PerfectData Software’ for probable malicious purposes in several Microsoft 365 account takeovers.
Using its anomaly-based detection, Darktrace DETECT™ was able to identify the activity chain surrounding the use of this application, potentially uncovering a novel piece of threat actor tradecraft in the process.
Microsoft 365 Intrusions
In recent years, Microsoft’s Software-as-a-Service (SaaS) suite, Microsoft 365, along with its built-in identity and access management (IAM) service, Azure Active Directory (Azure AD), have been heavily targeted by threat actors due to their near-ubiquitous usage across industries. Four out of every five Fortune 500 companies, for example, use Microsoft 365 services [1].
Malicious actors typically gain entry to organizations’ Microsoft 365 environments by abusing either stolen account credentials or stolen session cookies [2]. Once inside, actors can access sensitive data within mailboxes or SharePoint repositories, and send out emails or Teams messages. This activity can often result in serious financial harm, especially in cases where the malicious actor’s end-goal is to elicit fraudulent transactions.
Darktrace regularly observes malicious actors behaving in predictable ways once they gain access to customer Microsoft 365 environment. One typical example is the creation of new inbox rules and sending deceitful emails intended to convince recipients to carry out subsequent actions, such as following a malicious link or providing sensitive information. It is also common for actors to register new applications in Azure AD so that they can be used to conduct follow-up activities, like mass-mailing or data theft. The registration of applications in Azure AD therefore seems to be a relatively predictable threat actor behavior [3][4]. Darktrace DETECT understands that unusual application registrations in Azure AD may constitute a deviation in expected behavior, and therefore a possible indicator of account compromise.
These registrations of applications in Azure AD are evidenced by creations of, as well as assignments of permissions to, Service Principals in Azure AD. Darktrace has detected a growing trend in actors creating and assigning permissions to a Service Principal named ‘PerfectData Software’. Further investigation of this Azure AD activity revealed it to be part of an ongoing account takeover.
‘PerfectData Software’ Activity
Darktrace observed variations of the following pattern of activity relating to an application named ‘PerfectData Software’ within its customer base:
- Actor signs in to a Microsoft 365 account from an endpoint associated with a Virtual Private Server (VPS) or Virtual Private Network (VPN) service
- Actor registers an application called 'PerfectData Software' with Azure AD, and then grants permissions to the application
- Actor accesses mailbox data and creates inbox rule
In two separate incidents, malicious actors were observed conducting their activities from endpoints associated with VPN services (HideMyAss (HMA) VPN and Surfshark VPN, respectively) and from endpoints within the Autonomous System AS396073 MAJESTIC-HOSTING-01.
In March 2023, Darktrace observed a malicious actor signing in to a Microsoft 365 account from a Kuwait-based IP address within the Autonomous System, AS198605 AVAST Software s.r.o. This IP address is associated with the VPN service, HMA VPN. Over the next couple of days, an actor (likely the same malicious actor) signed in to the account several more times from two different Nigeria-based endpoints, as well as a VPS-related endpoint and a HMA VPN endpoint.
During their login sessions, the actor performed a variety of actions. First, they created and assigned permissions to a Service Principal named ‘PerfectData Software’. This Service Principal creation represents the registration of an application called ‘PerfectData Software’ in Azure AD. Although the reason for registering this application is unclear, within a few days the actor registered and granted permission to another application, ‘Newsletter Software Supermailer’, and created a new inbox rule names ‘s’ on the mailbox of the hijacked account. This inbox rule moved emails meeting certain conditions to a folder named ‘RSS Subscription. The ‘Newsletter Software Supermailer’ application was likely registered by the actor to facilitate mass-mailing activity.
Immediately after these actions, Darktrace detected the actor sending out thousands of malicious emails from the account. The emails included an attachment named ‘Credit Transfer Copy.html’, which contained a suspicious link. Further investigation revealed that the customer’s network had received several fake invoice emails prior to this initial intrusion activity. Additionally, there was an unusually high volume of failed logins to the compromised account around the time of the initial access.

In a separate case also observed by Darktrace in March 2023, a malicious actor was observed signing in to a Microsoft 365 account from an endpoint within the Autonomous System, AS397086 LAYER-HOST-HOUSTON. The endpoint appears to be related to the VPN service, Surfshark VPN. This login was followed by several failed and successful logins from a VPS-related within the Autonomous System, AS396073 MAJESTIC-HOSTING-01. The actor was then seen registering and assigning permissions to an application called ‘PerfectData Software’. As with the previous example, the motives for this registration are unclear. The actor proceeded to log in several more times from a Surfshark VPN endpoint, however, they were not observed carrying out any further suspicious activity.

It was not clear in either of these examples, nor in fact any of cases observed by Darktrace, why actors had registered and assigned permissions to an application called ‘PerfectData Software’, and there do not appear to be any open-source intelligence (OSINT) resources or online literature related to the malicious usage of an application by that name. That said, there are several websites which appear to provide email migration and data recovery/backup tools under the moniker ‘PerfectData Software’.
It is unclear whether the use of ‘PerfectData Software’ by malicious actors observed on the networks of Darktrace customers was one of these tools. However, given the nature of the tools, it is possible that the actors intended to use them to facilitate the exfiltration of email data from compromises mailboxes.
If the legitimate software ‘PerfectData’ is the application in question in these incidents, it is likely being purchased and misused by attackers for malicious purposes. It is also possible the application referenced in the incidents is a spoof of the legitimate ‘PerfectData’ software designed to masquerade a malicious application as legitimate.
Darktrace Coverage
Cases of ‘PerfectData Software’ activity chains detected by Darktrace typically began with an actor signing into an internal user’s Microsoft 365 account from a VPN or VPS-related endpoint. These login events, along with the suspicious email and/or brute-force activity which preceded them, caused the following DETECT models to breach:
- SaaS / Access / Unusual External Source for SaaS Credential Use
- SaaS / Access / Suspicious Login Attempt
- SaaS / Compromise / Login From Rare Following Suspicious Login Attempt(s)
- SaaS / Email Nexus / Unusual Location for SaaS and Email Activity
Subsequent activities, including inbox rule creations, registration of applications in Azure AD, and mass-mailing activity, resulted in breaches of the following DETECT models.
- SaaS / Admin / OAuth Permission Grant
- SaaS / Compromise / Unusual Logic Following OAuth Grant
- SaaS / Admin / New Application Service Principal
- IaaS / Admin / Azure Application Administration Activities
- SaaS / Compliance / New Email Rule
- SaaS / Compromiso / Inicio de sesión inusual y nueva regla de correo electrónico
- SaaS / Email Nexus / Suspicious Internal Exchange Activity
- SaaS / Email Nexus / Possible Outbound Email Spam
- SaaS / Compromise / Unusual Login and Outbound Email Spam
- SaaS / Compromise / Suspicious Login and Suspicious Outbound Email(s)

In cases where Darktrace RESPOND™ was enabled in autonomous response mode, ‘PerfectData Software’ activity chains resulted in breaches of the following RESPOND models:
• Antigena / SaaS / Antigena Suspicious SaaS Activity Block
• Antigena / SaaS / Antigena Significant Compliance Activity Block
In response to these model breaches, Darktrace RESPOND took immediate action, performing aggressive, inhibitive actions, such as forcing the actor to log out of the SaaS platform, and disabling the user entirely. When applied autonomously, these RESPOND actions would seriously impede an attacker’s progress and minimize network disruption.

In addition, Darktrace Cyber AI Analyst was able to autonomously investigate registrations of the ‘PerfectData Software’ application and summarized its findings into digestible reports.

Conclusion
Due to the widespread adoption of Microsoft 365 services in the workplace and continued emphasis on a remote workforce, account hijackings now pose a more serious threat to organizations around the world than ever before. The cases discussed here illustrate the tendency of malicious actors to conduct their activities from endpoints associated with VPN services, while also registering new applications, like PerfectData Software, with malicious intent.
While it was unclear exactly why the malicious actors were using ‘PerfectData Software’ as part of their account hijacking, it is clear that either the legitimate or spoofed version of the application is becoming an very likely emergent piece of threat actor tradecraft.
Darktrace DETECT’s anomaly-based approach to threat detection allowed it to recognize that the use of ‘PerfectData Software’ represented a deviation in the SaaS user’s expected behavior. While Darktrace RESPOND, when enabled in autonomous response mode, was able to quickly take preventative action against threat actors, blocking the potential use of the application for data exfiltration or other nefarious purposes.
Appendices
MITRE ATT&CK Mapping
Reconnaissance:
• T1598 – Phishing for Information
Credential Access:
• T1110 – Brute Force
Initial Access:
• T1078.004 – Valid Accounts: Cloud Accounts
Command and Control:
• T1105 – Ingress Tool Transfer
Persistence:
• T1098.003 – Account Manipulation: Additional Cloud Roles
Collection:
• T1114 – Email Collection
Defense Evasion:
• T1564.008 – Hide Artifacts: Email Hiding Rules
Lateral Movement:
• T1534 – Internal Spearphishing
Unusual Source IPs
• 5.62.60[.]202 (AS198605 AVAST Software s.r.o.)
• 160.152.10[.]215 (AS37637 Smile-Nigeria-AS)
• 197.244.250[.]155 (AS37705 TOPNET)
• 169.159.92[.]36 (AS37122 SMILE)
• 45.62.170[.]237 (AS396073 MAJESTIC-HOSTING-01)
• 92.38.180[.]49 (AS202422 G-Core Labs S.A)
• 129.56.36[.]26 (AS327952 AS-NATCOM)
• 92.38.180[.]47 (AS202422 G-Core Labs S.A.)
• 107.179.20[.]214 (AS397086 LAYER-HOST-HOUSTON)
• 45.62.170[.]31 (AS396073 MAJESTIC-HOSTING-01)
References
[1] https://www.investing.com/academy/statistics/microsoft-facts/
[2] https://intel471.com/blog/countering-the-problem-of-credential-theft
[3] https://darktrace.com/blog/business-email-compromise-to-mass-phishing-campaign-attack-analysis
[4] https://darktrace.com/blog/breakdown-of-a-multi-account-compromise-within-office-365
Blog
Cloud
Darktrace Integrates Self-Learning AI with Amazon Security Lake to Support Security Investigations
.jpeg)


Darktrace has deepened its relationship with AWS by integrating its detection and response capabilities with Amazon Security Lake.
This development will allow mutual customers to seamlessly combine Darktrace AI’s bespoke understanding of their organization with the Threat Intelligence offered by other security tools, and investigate all of their alerts in one central location.
This integration will improve the value security teams get from both products, streamlining analyst workflows and improving their ability to detect and respond to the full spectrum of known and unknown cyber-threats.
How Darktrace and Amazon Security Lake augment security teams
Amazon Security Lake is a newly-released service that automatically centralizes an organization’s security data from cloud, on-premises, and custom sources into a customer owned purpose-built data lake. Both Darktrace and Amazon Security Lake support the Open Cybersecurity Schema Framework (OCSF), an open standard to simplify, combine, and analyze security logs.
Customers can store security logs, events, alerts, and other relevant data generated by various AWS services and security tools. By consolidating security data in a central lake, organizations can gain a holistic view of their security posture, perform advanced analytics, detect anomalies and open investigations to improve their security practices.
With Darktrace DETECT and RESPOND AI engines covering all assets across IT, OT, network, endpoint, IoT, email and cloud, organizations can augment the value of their security data lakes by feeding Darktrace’s rich and context-aware datapoints to Amazon Security Lake.
Amazon Security Lake empowers security teams to improve the protection of your digital estate:
- Quick and painless data normalization
- Fast-tracks ability to investigate, triage and respond to security events
- Broader visibility aids more effective decision-making
- Surfaces and prioritizes anomalies for further investigation
- Single interface for seamless data management
How will Darktrace customers benefit?
Across the Cyber AI Loop, all Darktrace solutions have been architected with AWS best practices in mind. With this integration, Darktrace is bringing together its understanding of ‘self’ for every organization with the centralized data visibility of the Amazon Security Lake. Darktrace’s unique approach to cyber security, powered by groundbreaking AI research, delivers a superior dataset based on a deep and interconnected understanding of the enterprise.
Where other cyber security solutions are trained to identify threats based on historical attack data and techniques, Darktrace DETECT gains a bespoke understanding of every digital environment, continuously analyzing users, assets, devices and the complex relationships between them. Our AI analyzes thousands of metrics to reveal subtle deviations that may signal an evolving issue – even unknown techniques and novel malware. It distinguishes between malicious and benign behavior, identifying harmful activity that typically goes unnoticed. This rich dataset is fed into RESPOND, which takes precise action to neutralize threats against any and every asset, no matter where data resides.
Both DETECT and RESPOND are supported by Darktrace Self-Learning AI, which provides full, real-time visibility into an organization’s systems and data. This always-on threat analysis already makes humans better at cyber security, improving decisions and outcomes based on total visibility of the digital ecosystem, supporting human performance with AI coverage and empowering security teams to proactively protect critical assets.
Converting Darktrace alerts to the Amazon Security Lake Open Cybersecurity Schema Framework (OCSF) supplies the Security Operations Center (SOC) and incident response team with contextualized data, empowering them to accelerate their investigation, triage and response to potential cyber threats.
Darktrace is available for purchase on the AWS Marketplace.
Learn more about how Darktrace provides full-coverage, AI-powered cloud security for AWS, or see how our customers use Darktrace in their AWS cloud environments.
