Blog

Liderazgo del pensamiento

Preparing Security Defenses For the AI Cyber Attack Era

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Sep 2023
06
Sep 2023
The threat of AI being used in cyberattacks is growing. Learn how Darktrace is harnessing the power of AI to protect security systems against these attacks.

The last 12 months have been a watershed moment in the public perception and adoption of AI. With the rise of generative AI systems like ChatGPT and Google Bard, AI is becoming more embedded in our everyday lives and there is a lot of hype around what these tools can – or will - do.  

In cyber security, AI is a double-edged sword. Its use by cyber-attackers is still in its infancy, but Darktrace expects that the mass availability of generative AI tools like ChatGPT will significantly enhance attackers’ capabilities by providing better tools to generate and automate human-like attacks. There are three areas where Darktrace sees potential for AI to significantly enhance the capabilities of attackers: increasing the sophistication of low-level threat actors, increasing the speed of attacks through automation and eroding trust among users.

We’ve already started to see some potential indicators of these shifts.

In April, Darktrace revealed a 135% increase in ‘novel social engineering attacks’ – email attacks that show a strong linguistic deviation from other phishing emails – from January to February 2023 [1]. The timing corresponds with the widespread adoption of ChatGPT and suggests the use of generative AI tools is providing an avenue for threat actors to craft more sophisticated and targeted attacks, at speed and scale.

Between May and July this year, our Cyber AI Research Centre observed that multistage payload attacks, in which a malicious email encourages the recipient to follow a series of steps before delivering a payload or attempting to harvest sensitive information, have increased by an average of 59% across Darktrace customers. Nearly 50,000 more of these attacks were detected by Darktrace in July than May, indicating potential use of automation, and the speed of these types of attacks will likely rise as greater automation and AI are adopted and applied by attackers.

In the same period, Darktrace has seen changes in attacks that abuse trust. While VIP impersonation – phishing emails that mimic senior executives – decreased 11%, email account takeover attempts increased by 52% and impersonation of the internal IT team increased by 19% [2]. The changes suggest that as employees have become better attuned to the impersonation of senior executives, attackers are pivoting to impersonating IT teams to launch their attacks. While it’s common for attackers to pivot and adjust their techniques as efficacy declines, generative AI –  particularly deepfakes - has the potential to disrupt this pattern in favor of attackers. Factors like increasing linguistic sophistication and highly realistic voice deep fakes could more easily be deployed to deceive employees.

These early indicators give us a glimpse of a new era of disruption and challenges for cyber security. An era where novel is the new normal.

Darktrace was built for this moment.

Darktrace began ten years ago as an AI Research Centre. We saw that AI could address an existential threat – defending people, businesses and nations from a world of constantly evolving threats. This threat is only poised to grow as AI is increasingly used by attackers. That’s why we became one of the first to apply AI to cyber security and built a completely AI native technology platform aimed at freeing the world of cyber disruption.

We built everything at Darktrace with the same philosophy of using the right AI and the right data for the job.

Most AI today is trained periodically in offline training environments on huge amounts of combined historic training data. You give all that data to the AI, and then after a few days or weeks, you get a static AI model which you push live to serve its role until the next version is ready. This is ideal for tasks like generating imagery or, in cyber security, checking against known attack patterns, but the AI is static – it doesn’t learn or adapt until the next version is pushed live.

Darktrace takes a different and unique approach to nearly everyone else in cyber security. Our distinction lies in the algorithms we use, the data we use AND, most importantly, in how the two interact.  

Instead of taking your data to the AI, we take our AI to your data. Inside every single customer lies a Darktrace AI that is completely unique to them – their OWN data AI pipeline – plugged into their enterprise and self-learning in real time from everything that happens in their digital world –including email, cloud environments, manufacturing and operational systems, and physical locations.

The pace of new threats and the sophistication of the technology, including the use of AI, now outpaces any notion that a week old view of historic cyber threats can fully protect a business – either from the new threats that we’re seeing today from the sudden availability of generative AI tools, or the threats of tomorrow. For example, automated deepfakes where you can’t trust what you’re hearing or seeing, your employees being tricked into being inadvertent insiders, or self-evolving code designed to evade the best of those legacy defenses.

And because the increased use of AI in attacks will mean novel attacks will become the new normal, only Darktrace stands between those attacks succeeding or failing. We’ve seen this before with our technology detecting, and protecting customers against, Log4J, supply chain attacks like SolarWinds, the novel phishing scams we saw during the Covid-19 lockdowns, zero days like the Citrix Netscaler attack, novel ransomware worms such as WannaCry, or sophisticated nation-state attacks like APT35. We didn’t protect businesses because we were looking specifically for these threats, but we found them because every threat, whether known or novel, accidental or malicious, human or AI driven, impacts the customer, its people and its data.

The right AI for the right job

Today we’re on our 6th generation of Darktrace AI and, as we’ve innovated and developed, we’ve built a platform of applied AI techniques and algorithms that utilise Darktrace’s live, tailored knowledge of a business, to defend it alongside human security teams. Our focus has always been on using the right AI and the right data for the job, which is why our software uses:

  • A wide range of our own self-learning methods to understand new information and decide if something never seen before looks suspicious.
  • Real time Bayesian Probabilistic Methods allow models to be efficiently updated and controlled in real time.
  • Generative and applied AI run simulated phishing campaigns, tabletop exercises and realistic drills.
  • Deep-neural networks replicate the thought process of humans.
  • Graph theory understands the incredibly complex relationships between people, systems, organizations and supply chains.
  • Offensive AI techniques such as Generative Adversarial Networks (GANs) help to test and improve our ability to counter AI driven attacks.  
  • Natural language processing and large language models interpret and produce human consumable output.

This complex platform of AI tools and techniques, all sat within a business, focused on the customers’ data, brings a range of advantages in data privacy, explainability and data transfer costs. But its main achievement is the one we set out for ten years ago. It can provide protection that is always on - always learning, able to detect and stop the unusual, the suspicious and the novel – and, ultimately, to protect our customers from it. That’s what we’ve always done and that’s what we will continue to do, regardless of how the landscape shifts.


[1] Based on the average change in email attacks between January and February 2023 detected across Darktrace/Email deployments with control of outliers.

[2] Based on the change in the average number of emails assigned this classification per 10,000 emails on each Darktrace/Email deployment in May versus July 2023 (significantly more than 1,000 deployments in total).

DENTRO DEL SOC
Darktrace son expertos de talla mundial en inteligencia de amenazas, caza de amenazas y respuesta a incidentes, y proporcionan apoyo al SOC las 24 horas del día a miles de clientes de Darktrace en todo el mundo. Inside the SOC está redactado exclusivamente por estos expertos y ofrece un análisis de los ciberincidentes y las tendencias de las amenazas, basado en la experiencia real sobre el terreno.
AUTOR
SOBRE EL AUTOR
Jack Stockdale OBE
Chief Technology Officer

Jack Stockdale is the founding CTO at Darktrace. With over 20 years’ experience of software engineering, Jack is responsible for overseeing the development of Bayesian mathematical models and artificial intelligence algorithms that underpin Darktrace’s award-winning technology. Jack and his development team in Cambridge were recognized for their outstanding contribution to engineering by the Royal Academy of Engineering MacRobert Innovation Award Committee in 2017 and again in 2019. Jack has a degree in Computer Science from Lancaster University.

Book a 1-1 meeting with one of our experts
share this article
CASOS DE USO
No se ha encontrado ningún artículo.
PRODUCTOS DESTACADOS
No se ha encontrado ningún artículo.
Cobertura básica
No se ha encontrado ningún artículo.

More in this series

No se ha encontrado ningún artículo.

Blog

Email

How to Protect your Organization Against Microsoft Teams Phishing Attacks

Default blog imageDefault blog image
21
May 2024

The problem: Microsoft Teams phishing attacks are on the rise

Around 83% of Fortune 500 companies rely on Microsoft Office products and services1, with Microsoft Teams and Microsoft SharePoint in particular emerging as critical platforms to the business operations of the everyday workplace. Researchers across the threat landscape have begun to observe these legitimate services being leveraged more and more by malicious actors as an initial access method.

As Teams becomes a more prominent feature of the workplace many employees rely on it for daily internal and external communication, even surpassing email usage in some organizations. As Microsoft2 states, "Teams changes your relationship with email. When your whole group is working in Teams, it means you'll all get fewer emails. And you'll spend less time in your inbox, because you'll use Teams for more of your conversations."

However, Teams can be exploited to send targeted phishing messages to individuals either internally or externally, while appearing legitimate and safe. Users might receive an external message request from a Teams account claiming to be an IT support service or otherwise affiliated with the organization. Once a user has accepted, the threat actor can launch a social engineering campaign or deliver a malicious payload. As a primarily internal tool there is naturally less training and security awareness around Teams – due to the nature of the channel it is assumed to be a trusted source, meaning that social engineering is already one step ahead.

Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)
Figure 1: Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)

Microsoft Teams Phishing Examples

Microsoft has identified several major phishing attacks using Teams within the past year.

In July 2023, Microsoft announced that the threat actor known as Midnight Blizzard – identified by the United States as a Russian state-sponsored group – had launched a series of phishing campaigns via Teams with the aim of stealing user credentials. These attacks used previously compromised Microsoft 365 accounts and set up new domain names that impersonated legitimate IT support organizations. The threat actors then used social engineering tactics to trick targeted users into sharing their credentials via Teams, enabling them to access sensitive data.  

At a similar time, threat actor Storm-0324 was observed sending phishing lures via Teams containing links to malicious SharePoint-hosted files. The group targeted organizations that allow Teams users to interact and share files externally. Storm-0324’s goal is to gain initial access to hand over to other threat actors to pursue more dangerous follow-on attacks like ransomware.

For a more in depth look at how Darktrace stops Microsoft Teams phishing read our blog: Don’t Take the Bait: How Darktrace Keeps Microsoft Teams Phishing Attacks at Bay

The market: Existing Microsoft Teams security solutions are insufficient

Microsoft’s native Teams security focuses on payloads, namely links and attachments, as the principal malicious component of any phishing. These payloads are relatively straightforward to detect with their experience in anti-virus, sandboxing, and IOCs. However, this approach is unable to intervene before the stage at which payloads are delivered, before the user even gets the chance to accept or deny an external message request. At the same time, it risks missing more subtle threats that don’t include attachments or links – like early stage phishing, which is pure social engineering – or completely new payloads.

Equally, the market offering for Teams security is limited. Security solutions available on the market are always payload-focused, rather than taking into account the content and context in which a link or attachment is sent. Answering questions like:

  • Does it make sense for these two accounts to speak to each other?
  • Are there any linguistic indicators of inducement?

Furthermore, they do not correlate with email to track threats across multiple communication environments which could signal a wider campaign. Effectively, other market solutions aren’t adding extra value – they are protecting against the same types of threats that Microsoft is already covering by default.

The other aspect of Teams security that native and market solutions fail to address is the account itself. As well as focusing on Teams threats, it’s important to analyze messages to understand the normal mode of communication for a user, and spot when a user’s Teams activity might signal account takeover.

The solution: How Darktrace protects Microsoft Teams against sophisticated threats

With its biggest update to Darktrace/Email ever, Darktrace now offers support for Microsoft Teams. With that, we are bringing the same AI philosophy that protects your email and accounts to your messaging environment.  

Our Self-Learning AI looks at content and context for every communication, whether that’s sent in an email or Teams message. It looks at actual user behavior, including language patterns, relationship history of sender and recipient, tone and payloads, to understand if a message poses a threat. This approach allows Darktrace to detect threats such as social engineering and payloadless attacks using visibility and forensic capabilities that Microsoft security doesn’t currently offer, as well as early symptoms of account compromise.  

Unlike market solutions, Darktrace doesn’t offer a siloed approach to Teams security. Data and signals from Teams are shared across email to inform detection, and also with the wider Darktrace ActiveAI security platform. By correlating information from email and Teams with network and apps security, Darktrace is able to better identify suspicious Teams activity and vice versa.  

Interested in the other ways Darktrace/Email augments threat detection? Read our latest blog on how improving the quality of end-user reporting can decrease the burden on the SOC. To find our more about Darktrace's enduring partnership with Microsoft, click here.

References

[1] Essential Microsoft Office Statistics in 2024

[2] Microsoft blog, Microsoft Teams and email, living in harmony, 2024

Continue reading
About the author
Carlos Gray
Product Manager

Blog

Dentro del SOC

Don’t Take the Bait: How Darktrace Keeps Microsoft Teams Phishing Attacks at Bay

Default blog imageDefault blog image
20
May 2024

Social Engineering in Phishing Attacks

Faced with increasingly cyber-aware endpoint users and vigilant security teams, more and more threat actors are forced to think psychologically about the individuals they are targeting with their phishing attacks. Social engineering methods like taking advantage of the human emotions of their would-be victims, pressuring them to open emails or follow links or face financial or legal repercussions, and impersonating known and trusted brands or services, have become common place in phishing campaigns in recent years.

Phishing with Microsoft Teams

The malicious use of the popular communications platform Microsoft Teams has become widely observed and discussed across the threat landscape, with many organizations adopting it as their primary means of business communication, and many threat actors using it as an attack vector. As Teams allows users to communicate with people outside of their organization by default [1], it becomes an easy entry point for potential attackers to use as a social engineering vector.

In early 2024, Darktrace/Apps™ identified two separate instances of malicious actors using Microsoft Teams to launch a phishing attack against Darktrace customers in the Europe, the Middle East and Africa (EMEA) region. Interestingly, in this case the attackers not only used a well-known legitimate service to carry out their phishing campaign, but they were also attempting to impersonate an international hotel chain.

Despite these attempts to evade endpoint users and traditional security measures, Darktrace’s anomaly detection enabled it to identify the suspicious phishing messages and bring them to the customer’s attention. Additionally, Darktrace’s autonomous response capability, was able to follow-up these detections with targeted actions to contain the suspicious activity in the first instance.

Darktrace Coverage of Microsoft Teams Phishing

Chats Sent by External User and Following Actions by Darktrace

On February 29, 2024, Darktrace detected the presence of a new external user on the Software-as-a-Service (SaaS) environment of an EMEA customer for the first time. The user, “REDACTED@InternationalHotelChain[.]onmicrosoft[.]com” was only observed on this date and no further activities were detected from this user after February 29.

Later the same day, the unusual external user created its first chat on Microsoft Teams named “New Employee Loyalty Program”. Over the course of around 5 minutes, the user sent 63 messages across 21 different chats to unique internal users on the customer’s SaaS platform. All these chats included the ‘foreign tenant user’ and one of the customer’s internal users, likely in an attempt to remain undetected. Foreign tenant user, in this case, refers to users without access to typical internal software and privileges, indicating the presence of an external user.

Darktrace’s detection of unusual messages being sent by a suspicious external user via Microsoft Teams.
Figure 1: Darktrace’s detection of unusual messages being sent by a suspicious external user via Microsoft Teams.
Advanced Search results showing the presence of a foreign tenant user on the customer’s SaaS environment.
Figure 2: Advanced Search results showing the presence of a foreign tenant user on the customer’s SaaS environment.

Darktrace identified that the external user had connected from an unusual IP address located in Poland, 195.242.125[.]186. Darktrace understood that this was unexpected behavior for this user who had only previously been observed connecting from the United Kingdom; it further recognized that no other users within the customer’s environment had connected from this external source, thereby deeming it suspicious. Further investigation by Darktrace’s analyst team revealed that the endpoint had been flagged as malicious by several open-source intelligence (OSINT) vendors.

External Summary highlighting the rarity of the rare external source from which the Teams messages were sent.
Figure 3: External Summary highlighting the rarity of the rare external source from which the Teams messages were sent.

Following Darktrace’s initial detection of these suspicious Microsoft Teams messages, Darktrace's autonomous response was able to further support the customer by providing suggested mitigative actions that could be applied to stop the external user from sending any additional phishing messages.

Unfortunately, at the time of this attack Darktrace's autonomous response capability was configured in human confirmation mode, meaning any autonomous response actions had to be manually actioned by the customer. Had it been enabled in autonomous response mode, it would have been able promptly disrupt the attack, disabling the external user to prevent them from continuing their phishing attempts and securing precious time for the customer’s security team to begin their own remediation procedures.

Darktrace autonomous response actions that were suggested following the ’Large Volume of Messages Sent from New External User’ detection model alert.
Figure 4: Darktrace autonomous response actions that were suggested following the ’Large Volume of Messages Sent from New External User’ detection model alert.

External URL Sent within Teams Chats

Within the 21 Teams chats created by the threat actor, Darktrace identified 21 different external URLs being sent, all of which included the domain "cloud-sharcpoint[.]com”. Many of these URLs had been recently established and had been flagged as malicious by OSINT providers [3]. This was likely an attempt to impersonate “cloud-sharepoint[.]com”, the legitimate domain of Microsoft SharePoint, with the threat actor attempting to ‘typo-squat’ the URL to convince endpoint users to trust the legitimacy of the link. Typo-squatted domains are commonly misspelled URLs registered by opportunistic attackers in the hope of gaining the trust of unsuspecting targets. They are often used for nefarious purposes like dropping malicious files on devices or harvesting credentials.

Upon clicking this malicious link, users were directed to a similarly typo-squatted domain, “InternatlonalHotelChain[.]sharcpoInte-docs[.]com”. This domain was likely made to appear like the SharePoint URL used by the international hotel chain being impersonated.

Redirected link to a fake SharePoint page attempting to impersonate an international hotel chain.
Figure 5: Redirected link to a fake SharePoint page attempting to impersonate an international hotel chain.

This fake SharePoint page used the branding of the international hotel chain and contained a document named “New Employee Loyalty Program”; the same name given to the phishing messages sent by the attacker on Microsoft Teams. Upon accessing this file, users would be directed to a credential harvester, masquerading as a Microsoft login page, and prompted to enter their credentials. If successful, this would allow the attacker to gain unauthorized access to a user’s SaaS account, thereby compromising the account and enabling further escalation in the customer’s environment.

Figure 6: A fake Microsoft login page that popped-up when attempting to open the ’New Employee Loyalty Program’ document.

This is a clear example of an attacker attempting to leverage social engineering tactics to gain the trust of their targets and convince them to inadvertently compromise their account. Many corporate organizations partner with other companies and well-known brands to offer their employees loyalty programs as part of their employment benefits and perks. As such, it would not necessarily be unexpected for employees to receive such an offer from an international hotel chain. By impersonating an international hotel chain, threat actors would increase the probability of convincing their targets to trust and click their malicious messages and links, and unintentionally compromising their accounts.

In spite of the attacker’s attempts to impersonate reputable brands, platforms, Darktrace/Apps was able to successfully recognize the malicious intent behind this phishing campaign and suggest steps to contain the attack. Darktrace recognized that the user in question had deviated from its ‘learned’ pattern of behavior by connecting to the customer’s SaaS environment from an unusual external location, before proceeding to send an unusually large volume of messages via Teams, indicating that the SaaS account had been compromised.

A Wider Campaign?

Around a month later, in March 2024, Darktrace observed a similar incident of a malicious actor impersonating the same international hotel chain in a phishing attacking using Microsoft Teams, suggesting that this was part of a wider phishing campaign. Like the previous example, this customer was also based in the EMEA region.  

The attack tactics identified in this instance were very similar to the previously example, with a new external user identified within the network proceeding to create a series of Teams messages named “New Employee Loyalty Program” containing a typo-squatted external links.

There were a few differences with this second incident, however, with the attacker using the domain “@InternationalHotelChainExpeditions[.]onmicrosoft[.]com” to send their malicious Teams messages and using differently typo-squatted URLs to imitate Microsoft SharePoint.

As both customers targeted by this phishing campaign were subscribed to Darktrace’s Proactive Threat Notification (PTN) service, this suspicious SaaS activity was promptly escalated to the Darktrace Security Operations Center (SOC) for immediate triage and investigation. Following their investigation, the SOC team sent an alert to the customers informing them of the compromise and advising urgent follow-up.

Conclusion

While there are clear similarities between these Microsoft Teams-based phishing attacks, the attackers here have seemingly sought ways to refine their tactics, techniques, and procedures (TTPs), leveraging new connection locations and creating new malicious URLs in an effort to outmaneuver human security teams and conventional security tools.

As cyber threats grow increasingly sophisticated and evasive, it is crucial for organizations to employ intelligent security solutions that can see through social engineering techniques and pinpoint suspicious activity early.

Darktrace’s Self-Learning AI understands customer environments and is able to recognize the subtle deviations in a device’s behavioral pattern, enabling it to effectively identify suspicious activity even when attackers adapt their strategies. In this instance, this allowed Darktrace to detect the phishing messages, and the malicious links contained within them, despite the seemingly trustworthy source and use of a reputable platform like Microsoft Teams.

Credit to Min Kim, Cyber Security Analyst, Raymond Norbert, Cyber Security Analyst and Ryan Traill, Threat Content Lead

Appendix

Darktrace Model Detections

SaaS Model

Large Volume of Messages Sent from New External User

SaaS / Unusual Activity / Large Volume of Messages Sent from New External User

Indicators of Compromise (IoCs)

IoC – Type - Description

https://cloud-sharcpoint[.]com/[a-zA-Z0-9]{15} - Example hostname - Malicious phishing redirection link

InternatlonalHotelChain[.]sharcpolnte-docs[.]com – Hostname – Redirected Link

195.242.125[.]186 - External Source IP Address – Malicious Endpoint

MITRE Tactics

Tactic – Technique

Phishing – Initial Access (T1566)

References

[1] https://learn.microsoft.com/en-us/microsoftteams/trusted-organizations-external-meetings-chat?tabs=organization-settings

[2] https://www.virustotal.com/gui/ip-address/195.242.125.186/detection

[3] https://www.virustotal.com/gui/domain/cloud-sharcpoint.com

Continue reading
About the author
Min Kim
Cyber Security Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Inicie su prueba gratuita
Darktrace AI protecting a business from cyber threats.